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What we will practice today

Turning i.i.d. models into a likelihood function.

Finding MLEs by differentiating the log-likelihood.

Recognising conjugacy and writing down the posterior.

Computing posterior expectations and comparing to frequentist estimators.

Building credible intervals from posterior quantiles (via R).

Big idea

Bayes: π(θ | y) ∝ π(y | θ)π(θ)
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Problem 1: Geometric model setup

Assume
Y1, . . . ,YN | p i.i.d.∼ Geom(p), p ∈ (0, 1],

with pmf
π(x | p) = (1− p)x−1p, x ∈ {1, 2, 3, . . . }.

We observe data y = (y1, . . . , yN).

Tasks
1 Derive the likelihood and the MLE p̂(y).

2 With p ∼ Beta(α, β), derive π(p | y).
3 Compare MLE vs posterior mean; when do they match and what happens to the prior?
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1(a) Likelihood for the geometric model

Start from independence:

π(y | p) =
N∏
i=1

π(yi | p) =
N∏
i=1

(1− p)yi−1p.

Collect terms: let S =
∑N

i=1 yi .

π(y | p) = (1− p)
∑

(yi−1) pN = (1− p)S−N pN .

Likelihood function

L(p; y) ≡ π(y | p) ∝ (1− p)S−NpN (as a function of p).
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1(a) MLE via log-likelihood

Take logs (monotone transform, so maximiser unchanged):

ℓ(p) ≡ log L(p; y) = (S − N) log(1− p) + N log p.

Differentiate w.r.t. p:

dℓ

dp
= (S − N) · −1

1− p
+

N

p
= −S − N

1− p
+

N

p
.

Set to zero:

−S − N

1− p
+

N

p
= 0 =⇒ N

p
=

S − N

1− p
.

Solve for p:

N(1− p) = p(S − N) =⇒ N = pS =⇒ p̂MLE(y) =
N∑N
i=1 yi

.

(You were told you do not need to verify it is a maximum.)
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1(b) Prior and posterior: Beta conjugacy

Assume a Beta prior:

p ∼ Beta(α, β), π(p) ∝ pα−1(1− p)β−1.

Bayes’ rule:
π(p | y) ∝ π(y | p)π(p).

Substitute likelihood and prior:

π(p | y) ∝ (1− p)S−NpN · pα−1(1− p)β−1

= pN+α−1(1− p)(S−N)+β−1.

Recognise Beta form:

p | (Y = y) ∼ Beta
(
α+ N, β + S − N

)
.

Interpretation

α, β behave like pseudo-counts: they add to the data evidence.
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1(c) Compare MLE to posterior mean

MLE: p̂MLE =
N

S
.

Posterior mean (Beta): If p | y ∼ Beta(α+ N, β + S − N), then

E[p | y ] = α+ N

(α+ N) + (β + S − N)
=

α+ N

α+ β + S
.

When does E[p | y ] = p̂MLE ?

Set
α+ N

α+ β + S
=

N

S
.

Cross-multiply:
(α+ N)S = N(α+ β + S) =⇒ α(S − N) = Nβ.

So (for a fixed dataset) one can match the MLE by choosing

β = α
S − N

N
.

Important: If you want the equality to hold for all datasets, the only way is the
limiting/improper choice α = β = 0 (see next slide).
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1(c) What happens with α = β = 0?

If α = β = 0, then formally
π(p) ∝ p−1(1− p)−1,

which is Beta(0, 0).

Key point

Beta(0, 0) is not a proper prior: ∫ 1

0

1

p(1− p)
dp = ∞.

So it is an improper prior (it does not integrate to 1).

With this improper prior,

E[p | y ] = N

S
= p̂MLE,

but you must be cautious: you are relying on an improper prior.

Practical note: Proper weakly-informative Betas (e.g. α = β = 1 uniform, or α = β = 1
2

Jeffreys for Bernoulli-type problems) are often preferred.
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.

Practical note: Proper weakly-informative Betas (e.g. α = β = 1 uniform, or α = β = 1
2

Jeffreys for Bernoulli-type problems) are often preferred.
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Problem 2: Infectious period model

You observe n = 100 infected individuals.

100∑
i=1

ti = 870 days, ti > 0.

Model (clinician advice):

Ti | θ
i.i.d.∼ Gamma(5, θ) (shape = 5, rate = θ).

Prior:
θ ∼ Exp(0.01) (rate 0.01).

Tasks
1 Derive π(θ | t).
2 Obtain a 95% credible interval using R.
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2) Likelihood in θ (Gamma with known shape)

Gamma density (shape k = 5, rate θ):

f (t | θ) = θ5

Γ(5)
t5−1 exp(−θt) =

θ5

Γ(5)
t4 exp(−θt).

Independence gives the likelihood:

π(t | θ) =
n∏

i=1

θ5

Γ(5)
t4i e

−θti

∝ θ5n exp

(
−θ

n∑
i=1

ti

)
,

where we dropped terms not involving θ.

Sufficient statistic

Only
n∑

i=1

ti matters for θ here.
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2) Prior and posterior: Exp prior as Gamma

Exponential prior (rate 0.01):

π(θ) = 0.01 e−0.01θ ∝ e−0.01θ.

This is a special case of Gamma:

Exp(0.01) = Gamma(1, 0.01) (shape 1, rate 0.01).

Posterior:

π(θ | t) ∝ π(t | θ)π(θ)

∝ θ5n exp

(
−θ

n∑
i=1

ti

)
· exp(−0.01θ)

= θ5n exp

(
−θ

(
n∑

i=1

ti + 0.01

))
.
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.

Recognise Gamma kernel θk−1e−rθ:

k − 1 = 5n ⇒ k = 5n + 1, r =
∑

ti + 0.01.

θ | t ∼ Gamma
(
5n + 1,

n∑
i=1

ti + 0.01
)
.

For n = 100 and
∑

ti = 870:

θ | t ∼ Gamma(501, 870.01).
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2) 95% credible interval in R

A 95% equal-tailed credible interval uses posterior quantiles:

[q0.025, q0.975] , where qu = F−1(u).

R code (rate parameterisation)

n <- 100

S <- 870

shape_post <- 5*n + 1 # 501

rate_post <- S + 0.01 # 870.01

qgamma(c(0.025, 0.975), shape=shape_post, rate=rate_post)

For the given numbers, this returns approximately:

(0.527, 0.627) .

Interpretation: given the model and prior, there is 95% posterior probability that θ lies in this
interval.

Bayesian Inference and Computation 15 / 22



2) 95% credible interval in R

A 95% equal-tailed credible interval uses posterior quantiles:

[q0.025, q0.975] , where qu = F−1(u).

R code (rate parameterisation)

n <- 100

S <- 870

shape_post <- 5*n + 1 # 501

rate_post <- S + 0.01 # 870.01

qgamma(c(0.025, 0.975), shape=shape_post, rate=rate_post)

For the given numbers, this returns approximately:

(0.527, 0.627) .

Interpretation: given the model and prior, there is 95% posterior probability that θ lies in this
interval. Bayesian Inference and Computation 15 / 22



Problem 3: True or False (concept check)

Decide if each statement is true or false:

1 The likelihood function is proportional to the posterior distribution.

2 A 99% credible interval captures 99% of the posterior probability.

3 If random variables are exchangeable, we can reorder them without changing their joint
distribution.

4 Bayesian and frequentist methods always lead to significantly different estimates.
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3) Solutions with brief justification

1 False.
π(θ | y) ∝ π(y | θ)π(θ).

Posterior is proportional to likelihood times prior, not likelihood alone.

2 True. A 99% credible interval is constructed to contain 0.99 of posterior mass (e.g.
equal-tailed, HPD, etc., depending on definition).

3 True. Exchangeability means the joint distribution is invariant under permutations:

π(y1, . . . , yN) = π(yσ(1), . . . , yσ(N)) ∀ permutations σ.

4 False. When n is large and the prior is weak (or regular), Bayesian and frequentist
conclusions often nearly coincide (heuristically: posterior dominated by likelihood; formally:
Bernstein–von Mises type results).
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Problem 4: Pareto model with unknown shape

Pareto with scale α = 1 and shape β > 0:

π(x | β) = β

xβ+1
, x > 1.

Data y1, . . . , yN i.i.d. from this model.
Prior:

β ∼ Gamma(a, b) (shape a, rate b).

Task

Derive the posterior π(β | y).
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4) Likelihood for Pareto shape β

Likelihood:

π(y | β) =
N∏
i=1

β

yβ+1
i

= βN
N∏
i=1

y
−(β+1)
i .

Separate the β-dependent part:

N∏
i=1

y
−(β+1)
i =

(
N∏
i=1

y−1
i

)
·

(
N∏
i=1

y−β
i

)
.

The first bracket does not involve β (constant for the posterior kernel).
Rewrite the second bracket using logs:

N∏
i=1

y−β
i = exp

(
−β

N∑
i=1

log yi

)
.
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N∏
i=1

y−β
i = exp

(
−β

N∑
i=1

log yi

)
.
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4) Likelihood for Pareto shape β
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.

So (up to constants):

π(y | β) ∝ βN exp

(
−β

N∑
i=1

log yi

)
.
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4) Posterior: Gamma conjugacy

Prior:
π(β) ∝ βa−1e−bβ.

Posterior kernel:

π(β | y) ∝ π(y | β)π(β)

∝
[
βNe−β

∑
log yi

]
·
[
βa−1e−bβ

]
= β(N+a)−1 exp

(
−β

(
b +

N∑
i=1

log yi

))
.

Recognise Gamma:

β | y ∼ Gamma

(
N + a, b +

N∑
i=1

log yi

)
.

Sanity check

More data (N larger) increases the shape parameter; larger
∑

log yi increases the rate (shrinks
β).
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Summary: the patterns you should recognise

Likelihood from i.i.d.: π(y | θ) =
∏

i π(yi | θ).
MLE: maximise log L(θ) by differentiation.

Conjugacy: prior × likelihood keeps the same family:

Geom/Bernoulli-type p with Beta prior ⇒ Beta posterior.
Gamma rate parameter with Gamma/Exp prior ⇒ Gamma posterior.
Pareto shape with Gamma prior ⇒ Gamma posterior.

Credible intervals: posterior quantiles (e.g. qgamma).

One-line Bayes

Posterior ∝ Likelihood × Prior.
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