Bayesian Inference and Computation

Problem sheet 2
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What we will practice today

@ Turning i.i.d. models into a likelihood function.

e Finding MLEs by differentiating the log-likelihood.

@ Recognising conjugacy and writing down the posterior.

o Computing posterior expectations and comparing to frequentist estimators.

e Building credible intervals from posterior quantiles (via R).

Big idea
Bayes: 7(0|y) o< w(y | ) w(0)

Bayesian Inference and Computation 2/22



Problem 1: Geometric model setup

Assume
Yi,- o, YN | pi'li?' Geom(p), p € (0,1],
with pmf
(x| p)=(1-p)tp, x€{1,2,3,...}.
We observe data y = (y1,...,¥n)-

@ Derive the likelihood and the MLE j(y).
@ With p ~ Beta(a, 3), derive w(p | y).

© Compare MLE vs posterior mean; when do they match and what happens to the prior?
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1(a) Likelihood for the geometric model

Start from independence:

N N

(v 1p)=]]=ilp) =[] —p)"p.

i=1 i=1

N
N
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1(a) Likelihood for the geometric model

Start from independence:

N N
wly [ p) =[] =i lp)=]](0-p)'p.
i=1 i=1

Collect terms: let S = Zf\lzl Yi-

m(y | p) = (1 — p)=0iD pN = (1 — p)S=N pN.

N
N
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1(a) Likelihood for the geometric model

Start from independence:

N N
m(y | p) = HW(y; | p) = H(l —p)¥tp.

Collect terms: let S = Zf\lzl Yi-

m(y | p) = (1 — p)=0iD pN = (1 — p)S=N pN.

Likelihood function

Lip;y) =m(y [ p) < (1 — P)S_NPN (as a function of p).
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1(a) MLE via log-likelihood

Take logs (monotone transform, so maximiser unchanged):

{(p) = log L(p;y) = (5 — N)log(1 — p) + Nlogp.

N
N
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1(a) MLE via log-likelihood

Take logs (monotone transform, so maximiser unchanged):

{(p) = log L(p;y) = (5 — N)log(1 — p) + Nlogp.
Differentiate w.r.t. p:
d¢ -1 N S-N N

—=(5-N) ——+ —=-"— + —.
dp ( )1—p p 1-p p

N
N
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1(a) MLE via log-likelihood
Take logs (monotone transform, so maximiser unchanged):

{(p) = log L(p;y) = (5 — N)log(1 — p) + Nlogp.
Differentiate w.r.t. p:

dg:(S—N) -1 N S-N N

— et == 4 —.
dp 1-p p 1-p p
Set to zero:
S—N N N S—N
— 4+ —=0 = — = .
1-p p p l1-—p
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1(a) MLE via log-likelihood

Take logs (monotone transform, so maximiser unchanged):

{(p) = log L(p;y) = (5 — N)log(1 — p) + Nlogp.
Differentiate w.r.t. p:

de -1 N S-N N
dp ( )1—P P l-p p
Set to zero:
S—-N N N S—N
— 4+ —=0 = — = .
1-p p p 1-p
Solve for p:
~ N
N1-p)=p(S—N) = N=pS = | pue(y) = —y
>zt i

(You were told you do not need to verify it is a maximum.)
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1(b) Prior and posterior: Beta conjugacy

Assume a Beta prior:

p ~ Beta(a, ),  w(p) o< p* (1 - p)°t.

N
N
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1(b) Prior and posterior: Beta conjugacy

Assume a Beta prior:

p ~ Beta(a, ),  w(p) o< p* (1 - p)°t.
Bayes' rule:
m(p|y) x<n(y | p)m(p).

N
N
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1(b) Prior and posterior: Beta conjugacy

Assume a Beta prior:

p ~ Beta(a, ),  w(p) o< p* (1 - p)°t.
Bayes' rule:

m(p|y)ocn(y | p)m(p).

Substitute likelihood and prior:
( )S—NPN . pa—l(l _ p)ﬁ—l
_ pN+a 1(1 )(5—N)+5—1.
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1(b) Prior and posterior: Beta conjugacy

Assume a Beta prior:
p ~ Beta(a, ),  w(p) o< p* (1 - p)°t.
Bayes' rule:
m(p y) occnly [ p)m(p).
Substitute likelihood and prior:

m(p|y) o< (1—p)>NpN. po7l(1 - p)?
pN+a 1(1 )(S—N)-&-B—l.

Recognise Beta form:

pl(Y=y) ~ Beta(a+ N, 3+S—N).

Interpretation

«, B behave like pseudo-counts: they add to the data evidence
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1(c) Compare MLE to posterior mean

N N
MLE: PMLE = g

N
N
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1(c) Compare MLE to posterior mean

n N
MLE: PMLE = g

Posterior mean (Beta): If p| y ~ Beta(aw + N, 5+ S — N), then

B B a+ N | a+N
P = W+ (r5—M) | at5eS |

N
N
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1(c) Compare MLE to posterior mean

n N
MLE: PMLE = E

Posterior mean (Beta): If p | y ~ Beta(aw+ N, 5+ S — N), then

a+ N a+ N

E[p|y]:(a+N)+(5+5—N) a+f+S |

When does E[p | y] = pumie ?
Set

a+N N
a+B+S S’
Cross-multiply:
(a+N)S=Na+5+S) = afS—N)=Np.
So (for a fixed dataset) one can match the MLE by choosing

. S—N
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1(c) Compare MLE to posterior mean

n N
MLE: PMLE = E

Posterior mean (Beta): If p | y ~ Beta(aw+ N, 5+ S — N), then

a+ N a+ N

E[p|y]:(a+N)+(5+5—N) a+f+S |

When does E[p | y] = pumie ?
Set

a+N N
a+B+S S’
Cross-multiply:
(a+N)S=Na+5+S) = afS—N)=Np.
So (for a fixed dataset) one can match the MLE by choosing

. S—N
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1(c) Compare MLE to posterior mean

When does E[,D ‘ y] = ﬁMLE ?

Set
a-+ N N

atB+S S
Cross-multiply:
(a+N)S=Na+5+S) = af(S—N)=Np.
So (for a fixed dataset) one can match the MLE by choosing

S—N

f=a—py
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1(c) Compare MLE to posterior mean

When does E[,D ‘ y] = ﬁMLE ?

Set
a-+ N N

a+f+S S
Cross-multiply:
(a+N)S=Na+5+S) = af(S—N)=Np.

So (for a fixed dataset) one can match the MLE by choosing

S—N
N

b=«

Important: If you want the equality to hold for all datasets, the only way is the
limiting/improper choice &« = 3 = 0 (see next slide).
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1(c) What happens with a = 5 = 07

If =3 =0, then formally

which is Beta(0, 0).

N
N
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1(c) What happens with a = 5 = 07

If =3 =0, then formally

m(p) o p~H(1—p) T,

which is Beta(0, 0).

Key point

Beta(0,0) is not a proper prior:

L 1
= _dp=oo.
/0 p(1—p) "

So it is an improper prior (it does not integrate to 1).
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1(c) What happens with a = 5 = 07

If =3 =0, then formally

m(p) o p~H(1—p) T,

which is Beta(0, 0).

Beta(0,0) is not a proper prior:

L 1
= _dp=oo.
/0 p(1—p) "

So it is an improper prior (it does not integrate to 1).

With this improper prior,
N
Elp|y]= < = PuLE,
but you must be cautious: you are relying on an improper prior.

hd -
Bayesian Inference and Computation




Practical note: Proper weakly-informative Betas (e.g. &« = f = 1 uniform, or a = 3 = 5
Jeffreys for Bernoulli-type problems) are often preferred.
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Problem 2: Infectious period model

You observe n = 100 infected individuals.

100

>t =870 days, ti > 0.
i=1
Model (clinician advice):

Ti |0 Hg Gamma(5,0) (shape =5, rate = 6).
Prior:

6 ~ Exp(0.01) (rate 0.01).

© Derive 7(6 | t).
@ Obtain a 95% credible interval using R.

) = = = e
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2) Likelihood in 6 (Gamma with known shape)

Gamma density (shape k =5, rate 6):
5

95
f(t]6) = ——t>"Lexp(—06t) = G

G ——t* exp(—01t).
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2) Likelihood in 6 (Gamma with known shape)

Gamma density (shape k =5, rate 6):

F(£18) = 2 5 exp(— 1) = 2 t* exp(—01t)
G A A
Independence gives the likelihood:
n 05
t10)=]]==tle
(e19) =T 75y tfe

where we dropped terms not involving 6.

Bayesian Inference and Computation 12 /22



2) Likelihood in 6 (Gamma with known shape)

Gamma density (shape k =5, rate 6):

F(£]0) = o 15 exp(—1) = o t* exp(—01)
G A A
Independence gives the likelihood:
n 05
t10)=]]==tle
(e19) =T 75y tfe

where we dropped terms not involving 6.

Sufficient statistic

n
Only Z t; matters for 6 here.
i=1
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2) Prior and posterior: Exp prior as Gamma

Exponential prior (rate 0.01):

m(0) =0.01e %% o 7001,
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2) Prior and posterior: Exp prior as Gamma

Exponential prior (rate 0.01):
m(0) =0.01e %% o 7001,
This is a special case of Gamma:

Exp(0.01) = Gamma(1,0.01) (shape 1, rate 0.01).
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2) Prior and posterior: Exp prior as Gamma

Exponential prior (rate 0.01):
m(0) =0.01e %% o 7001,
This is a special case of Gamma:
Exp(0.01) = Gamma(1,0.01) (shape 1, rate 0.01).
Posterior:

7(0] t) o 7(t | 0)m(6)

n

o 0°" exp <—0 Z t,-) - exp(—0.016)

i=1

= 0°" exp <—o (Z ti + 0.01)) .
i=1
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Recognise Gamma kernel §¥—1e="7:

k—1=5n= k=5n+1, r=> t+00L

0t~ Gamma<5n +1, Y 6+ 0.01).
i=1

For n =100 and ) t; = 870:

‘ 0| t ~ Gamma(501, 870.01). ‘
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2) 95% credible interval in R

A 95% equal-tailed credible interval uses posterior quantiles:

[q0.025, qo.o75), where g, = F~1(u).

R code (rate parameterisation)

n <- 100

S <= 870

shape_post <- 5*n + 1 # 501

rate_post <- S + 0.01 # 870.01

ggamma (c(0.025, 0.975), shape=shape_post, rate=rate_post)
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2) 95% credible interval in R

A 95% equal-tailed credible interval uses posterior quantiles:

[q0.025, qo.o75), where g, = F~1(u).

R code (rate parameterisation)

n <- 100

S <= 870

shape_post <- 5*n + 1 # 501

rate_post <- S + 0.01 # 870.01

ggamma (c(0.025, 0.975), shape=shape_post, rate=rate_post)

For the given numbers, this returns approximately:

1(0.527, 0.627)).

Interpretation: given the model and prior, there is 95% posterior probability that @ lies in_this
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Problem 3: True or False (concept check)

Decide if each statement is true or false:
© The likelihood function is proportional to the posterior distribution.
Q@ A 99% credible interval captures 99% of the posterior probability.

© If random variables are exchangeable, we can reorder them without changing their joint
distribution.

@ Bayesian and frequentist methods always lead to significantly different estimates.
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3) Solutions with brief justification

Q@ False.
m(0 | y) ocw(y [ ) w(6).

Posterior is proportional to likelihood times prior, not likelihood alone.
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3) Solutions with brief justification

© False.
m(0 | y) ocw(y [ ) w(6).
Posterior is proportional to likelihood times prior, not likelihood alone.

@ True. A 99% credible interval is constructed to contain 0.99 of posterior mass (e.g.
equal-tailed, HPD, etc., depending on definition).
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3) Solutions with brief justification

© False.
m(0 | y) ocw(y [ ) w(6).
Posterior is proportional to likelihood times prior, not likelihood alone.

@ True. A 99% credible interval is constructed to contain 0.99 of posterior mass (e.g.
equal-tailed, HPD, etc., depending on definition).
© True. Exchangeability means the joint distribution is invariant under permutations:

(Y1, -5 ¥n) = T(Yo(1) - - -» Yo(ny) ¥ permutations o.
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3) Solutions with brief justification

© False.
m(0 | y) ocw(y [ ) w(6).
Posterior is proportional to likelihood times prior, not likelihood alone.

@ True. A 99% credible interval is constructed to contain 0.99 of posterior mass (e.g.
equal-tailed, HPD, etc., depending on definition).

© True. Exchangeability means the joint distribution is invariant under permutations:

(Y1, -5 ¥n) = T(Yo(1) - - -» Yo(ny) ¥ permutations o.

© False. When n is large and the prior is weak (or regular), Bayesian and frequentist
conclusions often nearly coincide (heuristically: posterior dominated by likelihood; formally:
Bernstein—von Mises type results).
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Problem 4: Pareto model with unknown shape

Pareto with scale « = 1 and shape 3 > O:

7T(X|,6):W, X>1

Data y1,...,yn i.i.d. from this model.
Prior:

B ~ Gamma(a, b) (shape a, rate b).

Derive the posterior w(3 | y). \
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4) Likelihood for Pareto shape /3

Likelihood:

N ,3 N
w(y | 8) =11 57 = 8" [Ty Y.

i=17i i=1
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4) Likelihood for Pareto shape /3

Likelihood:

N
(y | B) = M =Ny .

i=1Yi i=1

Separate the S-dependent part:

- i) (i)

The first bracket does not involve [ (constant for the posterior kernel).
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4) Likelihood for Pareto shape /3

Likelihood:

5B & ;
w18 =11 5 = A 7
i=17i

i=1

Separate the S-dependent part:

- i) (i)

The first bracket does not involve [ (constant for the posterior kernel).
Rewrite the second bracket using logs:

N N
[[yi7=ew (—BZ |ogyf) :
i=1 i=1
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So (up to constants):

N
w(y|8) o Y exp(—ﬁZlogy,-) :
i=1
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4) Posterior: Gamma conjugacy

Prior:
n(8) o f*1e .
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4) Posterior: Gamma conjugacy

Prior:
7(B) o 37 Le b5,
Posterior kernel:
(B | y) < w(y | B)m(B)
- [ﬂNe—ﬁZIogy,} ) [ﬂa—le—bﬁ]

N
= BN+a)—1 o <—ﬂ <b + Z |ogy,-> ) .
i=1
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4) Posterior: Gamma conjugacy

Prior:
7(B) o 37 Le b5,
Posterior kernel:
(B | y) < w(y | B)m(B)
- [ﬂNe—ﬁZIogy,} ) [ﬂa—le—bﬁ]

N
= BN+a)—1 o <—ﬂ <b + Z |ogy,-> > .
i=1

Recognise Gamma:

N
Bly ~ Gamma(N—i—a, b—i—ZIogy,-).

i=1

Sanity check
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Summary: the patterns you should recognise

o Likelihood from i.i.d.: 7(y | §) = [[; 7(yi | 0).
e MLE: maximise log L(#) by differentiation.
@ Conjugacy: prior x likelihood keeps the same family:

o Geom/Bernoulli-type p with Beta prior = Beta posterior.
o Gamma rate parameter with Gamma/Exp prior = Gamma posterior.
e Pareto shape with Gamma prior = Gamma posterior.

o Credible intervals: posterior quantiles (e.g. ggamma).
One-line Bayes
Posterior o< Likelihood x Prior.
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