

Bayesian Inference and Computation

Problem sheet 2

What we will practice today

- Turning i.i.d. models into a **likelihood function**.
- Finding **MLEs** by differentiating the **log-likelihood**.
- Recognising **conjugacy** and writing down the **posterior**.
- Computing **posterior expectations** and comparing to frequentist estimators.
- Building **credible intervals** from posterior quantiles (via R).

Big idea

$$\text{Bayes: } \pi(\theta | y) \propto \pi(y | \theta) \pi(\theta)$$

Problem 1: Geometric model setup

Assume

$$Y_1, \dots, Y_N \mid p \stackrel{\text{i.i.d.}}{\sim} \text{Geom}(p), \quad p \in (0, 1],$$

with pmf

$$\pi(x \mid p) = (1 - p)^{x-1} p, \quad x \in \{1, 2, 3, \dots\}.$$

We observe data $y = (y_1, \dots, y_N)$.

Tasks

- ① Derive the likelihood and the MLE $\hat{p}(y)$.
- ② With $p \sim \text{Beta}(\alpha, \beta)$, derive $\pi(p \mid y)$.
- ③ Compare MLE vs posterior mean; when do they match and what happens to the prior?

1(a) Likelihood for the geometric model

Start from independence:

$$\pi(y \mid p) = \prod_{i=1}^N \pi(y_i \mid p) = \prod_{i=1}^N (1 - p)^{y_i - 1} p.$$

1(a) Likelihood for the geometric model

Start from independence:

$$\pi(y \mid p) = \prod_{i=1}^N \pi(y_i \mid p) = \prod_{i=1}^N (1-p)^{y_i-1} p.$$

Collect terms: let $S = \sum_{i=1}^N y_i$.

$$\pi(y \mid p) = (1-p)^{\sum(y_i-1)} p^N = (1-p)^{S-N} p^N.$$

1(a) Likelihood for the geometric model

Start from independence:

$$\pi(y \mid p) = \prod_{i=1}^N \pi(y_i \mid p) = \prod_{i=1}^N (1-p)^{y_i-1} p.$$

Collect terms: let $S = \sum_{i=1}^N y_i$.

$$\pi(y \mid p) = (1-p)^{\sum(y_i-1)} p^N = (1-p)^{S-N} p^N.$$

Likelihood function

$$L(p; y) \equiv \pi(y \mid p) \propto (1-p)^{S-N} p^N \quad (\text{as a function of } p).$$

1(a) MLE via log-likelihood

Take logs (monotone transform, so maximiser unchanged):

$$\ell(p) \equiv \log L(p; y) = (S - N) \log(1 - p) + N \log p.$$

1(a) MLE via log-likelihood

Take logs (monotone transform, so maximiser unchanged):

$$\ell(p) \equiv \log L(p; y) = (S - N) \log(1 - p) + N \log p.$$

Differentiate w.r.t. p :

$$\frac{d\ell}{dp} = (S - N) \cdot \frac{-1}{1 - p} + \frac{N}{p} = -\frac{S - N}{1 - p} + \frac{N}{p}.$$

1(a) MLE via log-likelihood

Take logs (monotone transform, so maximiser unchanged):

$$\ell(p) \equiv \log L(p; y) = (S - N) \log(1 - p) + N \log p.$$

Differentiate w.r.t. p :

$$\frac{d\ell}{dp} = (S - N) \cdot \frac{-1}{1 - p} + \frac{N}{p} = -\frac{S - N}{1 - p} + \frac{N}{p}.$$

Set to zero:

$$-\frac{S - N}{1 - p} + \frac{N}{p} = 0 \implies \frac{N}{p} = \frac{S - N}{1 - p}.$$

1(a) MLE via log-likelihood

Take logs (monotone transform, so maximiser unchanged):

$$\ell(p) \equiv \log L(p; y) = (S - N) \log(1 - p) + N \log p.$$

Differentiate w.r.t. p :

$$\frac{d\ell}{dp} = (S - N) \cdot \frac{-1}{1 - p} + \frac{N}{p} = -\frac{S - N}{1 - p} + \frac{N}{p}.$$

Set to zero:

$$-\frac{S - N}{1 - p} + \frac{N}{p} = 0 \implies \frac{N}{p} = \frac{S - N}{1 - p}.$$

Solve for p :

$$N(1 - p) = p(S - N) \implies N = pS \implies \boxed{\hat{p}_{\text{MLE}}(y) = \frac{N}{\sum_{i=1}^N y_i}}.$$

(You were told you do *not* need to verify it is a maximum.)

1(b) Prior and posterior: Beta conjugacy

Assume a Beta prior:

$$p \sim \text{Beta}(\alpha, \beta), \quad \pi(p) \propto p^{\alpha-1} (1-p)^{\beta-1}.$$

1(b) Prior and posterior: Beta conjugacy

Assume a Beta prior:

$$p \sim \text{Beta}(\alpha, \beta), \quad \pi(p) \propto p^{\alpha-1} (1-p)^{\beta-1}.$$

Bayes' rule:

$$\pi(p \mid y) \propto \pi(y \mid p) \pi(p).$$

1(b) Prior and posterior: Beta conjugacy

Assume a Beta prior:

$$p \sim \text{Beta}(\alpha, \beta), \quad \pi(p) \propto p^{\alpha-1}(1-p)^{\beta-1}.$$

Bayes' rule:

$$\pi(p \mid y) \propto \pi(y \mid p) \pi(p).$$

Substitute likelihood and prior:

$$\begin{aligned}\pi(p \mid y) &\propto (1-p)^{S-N} p^N \cdot p^{\alpha-1}(1-p)^{\beta-1} \\ &= p^{N+\alpha-1} (1-p)^{(S-N)+\beta-1}.\end{aligned}$$

1(b) Prior and posterior: Beta conjugacy

Assume a Beta prior:

$$p \sim \text{Beta}(\alpha, \beta), \quad \pi(p) \propto p^{\alpha-1}(1-p)^{\beta-1}.$$

Bayes' rule:

$$\pi(p | y) \propto \pi(y | p) \pi(p).$$

Substitute likelihood and prior:

$$\begin{aligned}\pi(p | y) &\propto (1-p)^{S-N} p^N \cdot p^{\alpha-1}(1-p)^{\beta-1} \\ &= p^{N+\alpha-1} (1-p)^{(S-N)+\beta-1}.\end{aligned}$$

Recognise Beta form:

$$p | (Y = y) \sim \text{Beta}(\alpha + N, \beta + S - N).$$

Interpretation

α, β behave like **pseudo-counts**: they add to the data evidence.

1(c) Compare MLE to posterior mean

MLE: $\hat{p}_{\text{MLE}} = \frac{N}{S}.$

1(c) Compare MLE to posterior mean

MLE: $\hat{p}_{\text{MLE}} = \frac{N}{S}$.

Posterior mean (Beta): If $p \mid y \sim \text{Beta}(\alpha + N, \beta + S - N)$, then

$$\mathbb{E}[p \mid y] = \frac{\alpha + N}{(\alpha + N) + (\beta + S - N)} = \boxed{\frac{\alpha + N}{\alpha + \beta + S}}.$$

1(c) Compare MLE to posterior mean

MLE: $\hat{p}_{\text{MLE}} = \frac{N}{S}$.

Posterior mean (Beta): If $p \mid y \sim \text{Beta}(\alpha + N, \beta + S - N)$, then

$$\mathbb{E}[p \mid y] = \frac{\alpha + N}{(\alpha + N) + (\beta + S - N)} = \boxed{\frac{\alpha + N}{\alpha + \beta + S}}.$$

When does $\mathbb{E}[p \mid y] = \hat{p}_{\text{MLE}}$?

Set

$$\frac{\alpha + N}{\alpha + \beta + S} = \frac{N}{S}.$$

Cross-multiply:

$$(\alpha + N)S = N(\alpha + \beta + S) \implies \alpha(S - N) = N\beta.$$

So (for a *fixed dataset*) one can match the MLE by choosing

$$\boxed{\alpha = \frac{N\beta}{S - N}}$$

1(c) Compare MLE to posterior mean

MLE: $\hat{p}_{\text{MLE}} = \frac{N}{S}$.

Posterior mean (Beta): If $p \mid y \sim \text{Beta}(\alpha + N, \beta + S - N)$, then

$$\mathbb{E}[p \mid y] = \frac{\alpha + N}{(\alpha + N) + (\beta + S - N)} = \boxed{\frac{\alpha + N}{\alpha + \beta + S}}.$$

When does $\mathbb{E}[p \mid y] = \hat{p}_{\text{MLE}}$?

Set

$$\frac{\alpha + N}{\alpha + \beta + S} = \frac{N}{S}.$$

Cross-multiply:

$$(\alpha + N)S = N(\alpha + \beta + S) \implies \alpha(S - N) = N\beta.$$

So (for a *fixed dataset*) one can match the MLE by choosing

$$\boxed{S - N}$$

1(c) Compare MLE to posterior mean

When does $\mathbb{E}[p | y] = \hat{p}_{\text{MLE}}$?

Set

$$\frac{\alpha + N}{\alpha + \beta + S} = \frac{N}{S}.$$

Cross-multiply:

$$(\alpha + N)S = N(\alpha + \beta + S) \implies \alpha(S - N) = N\beta.$$

So (for a *fixed dataset*) one can match the MLE by choosing

$$\boxed{\beta = \alpha \frac{S - N}{N}}.$$

1(c) Compare MLE to posterior mean

When does $\mathbb{E}[p | y] = \hat{p}_{\text{MLE}}$?

Set

$$\frac{\alpha + N}{\alpha + \beta + S} = \frac{N}{S}.$$

Cross-multiply:

$$(\alpha + N)S = N(\alpha + \beta + S) \implies \alpha(S - N) = N\beta.$$

So (for a *fixed dataset*) one can match the MLE by choosing

$$\boxed{\beta = \alpha \frac{S - N}{N}}.$$

Important: If you want the equality to hold *for all datasets*, the only way is the limiting/improper choice $\alpha = \beta = 0$ (see next slide).

1(c) What happens with $\alpha = \beta = 0$?

If $\alpha = \beta = 0$, then formally

$$\pi(p) \propto p^{-1}(1-p)^{-1},$$

which is Beta(0, 0).

1(c) What happens with $\alpha = \beta = 0$?

If $\alpha = \beta = 0$, then formally

$$\pi(p) \propto p^{-1}(1-p)^{-1},$$

which is Beta(0, 0).

Key point

Beta(0, 0) is **not a proper prior**:

$$\int_0^1 \frac{1}{p(1-p)} dp = \infty.$$

So it is an **improper prior** (it does not integrate to 1).

1(c) What happens with $\alpha = \beta = 0$?

If $\alpha = \beta = 0$, then formally

$$\pi(p) \propto p^{-1}(1-p)^{-1},$$

which is Beta(0, 0).

Key point

Beta(0, 0) is **not a proper prior**:

$$\int_0^1 \frac{1}{p(1-p)} dp = \infty.$$

So it is an **improper prior** (it does not integrate to 1).

With this improper prior,

$$\mathbb{E}[p \mid y] = \frac{N}{S} = \hat{p}_{\text{MLE}},$$

but you must be cautious: you are relying on an improper prior.

Practical note: Proper weakly-informative Betas (e.g. $\alpha = \beta = 1$ uniform, or $\alpha = \beta = \frac{1}{2}$ Jeffreys for Bernoulli-type problems) are often preferred.

Problem 2: Infectious period model

You observe $n = 100$ infected individuals.

$$\sum_{i=1}^{100} t_i = 870 \text{ days, } t_i > 0.$$

Model (clinician advice):

$$T_i \mid \theta \stackrel{\text{i.i.d.}}{\sim} \text{Gamma}(5, \theta) \quad (\text{shape} = 5, \text{rate} = \theta).$$

Prior:

$$\theta \sim \text{Exp}(0.01) \quad (\text{rate } 0.01).$$

Tasks

- ① Derive $\pi(\theta \mid t)$.
- ② Obtain a 95% credible interval using R.

2) Likelihood in θ (Gamma with known shape)

Gamma density (shape $k = 5$, rate θ):

$$f(t | \theta) = \frac{\theta^5}{\Gamma(5)} t^{5-1} \exp(-\theta t) = \frac{\theta^5}{\Gamma(5)} t^4 \exp(-\theta t).$$

2) Likelihood in θ (Gamma with known shape)

Gamma density (shape $k = 5$, rate θ):

$$f(t | \theta) = \frac{\theta^5}{\Gamma(5)} t^{5-1} \exp(-\theta t) = \frac{\theta^5}{\Gamma(5)} t^4 \exp(-\theta t).$$

Independence gives the likelihood:

$$\begin{aligned}\pi(\mathbf{t} | \theta) &= \prod_{i=1}^n \frac{\theta^5}{\Gamma(5)} t_i^4 e^{-\theta t_i} \\ &\propto \theta^{5n} \exp\left(-\theta \sum_{i=1}^n t_i\right),\end{aligned}$$

where we dropped terms not involving θ .

2) Likelihood in θ (Gamma with known shape)

Gamma density (shape $k = 5$, rate θ):

$$f(t | \theta) = \frac{\theta^5}{\Gamma(5)} t^{5-1} \exp(-\theta t) = \frac{\theta^5}{\Gamma(5)} t^4 \exp(-\theta t).$$

Independence gives the likelihood:

$$\begin{aligned} \pi(\mathbf{t} | \theta) &= \prod_{i=1}^n \frac{\theta^5}{\Gamma(5)} t_i^4 e^{-\theta t_i} \\ &\propto \theta^{5n} \exp\left(-\theta \sum_{i=1}^n t_i\right), \end{aligned}$$

where we dropped terms not involving θ .

Sufficient statistic

Only $\sum_{i=1}^n t_i$ matters for θ here.

2) Prior and posterior: Exp prior as Gamma

Exponential prior (rate 0.01):

$$\pi(\theta) = 0.01 e^{-0.01\theta} \propto e^{-0.01\theta}.$$

2) Prior and posterior: Exp prior as Gamma

Exponential prior (rate 0.01):

$$\pi(\theta) = 0.01 e^{-0.01\theta} \propto e^{-0.01\theta}.$$

This is a special case of Gamma:

$$\text{Exp}(0.01) = \text{Gamma}(1, 0.01) \quad (\text{shape 1, rate 0.01}).$$

2) Prior and posterior: Exp prior as Gamma

Exponential prior (rate 0.01):

$$\pi(\theta) = 0.01 e^{-0.01\theta} \propto e^{-0.01\theta}.$$

This is a special case of Gamma:

$$\text{Exp}(0.01) = \text{Gamma}(1, 0.01) \quad (\text{shape 1, rate 0.01}).$$

Posterior:

$$\begin{aligned}\pi(\theta \mid \mathbf{t}) &\propto \pi(\mathbf{t} \mid \theta) \pi(\theta) \\ &\propto \theta^{5n} \exp\left(-\theta \sum_{i=1}^n t_i\right) \cdot \exp(-0.01\theta) \\ &= \theta^{5n} \exp\left(-\theta \left(\sum_{i=1}^n t_i + 0.01\right)\right).\end{aligned}$$

Recognise Gamma kernel $\theta^{k-1}e^{-r\theta}$:

$$k - 1 = 5n \Rightarrow k = 5n + 1, \quad r = \sum t_i + 0.01.$$

$$\theta \mid \mathbf{t} \sim \text{Gamma}\left(5n + 1, \sum_{i=1}^n t_i + 0.01\right).$$

For $n = 100$ and $\sum t_i = 870$:

$$\theta \mid \mathbf{t} \sim \text{Gamma}(501, 870.01).$$

2) 95% credible interval in R

A 95% equal-tailed credible interval uses posterior quantiles:

$$[q_{0.025}, q_{0.975}], \text{ where } q_u = F^{-1}(u).$$

R code (rate parameterisation)

```
n <- 100
S <- 870
shape_post <- 5*n + 1      # 501
rate_post   <- S + 0.01    # 870.01

qgamma(c(0.025, 0.975), shape=shape_post, rate=rate_post)
```

2) 95% credible interval in R

A 95% equal-tailed credible interval uses posterior quantiles:

$$[q_{0.025}, q_{0.975}], \text{ where } q_u = F^{-1}(u).$$

R code (rate parameterisation)

```
n <- 100
S <- 870
shape_post <- 5*n + 1      # 501
rate_post   <- S + 0.01    # 870.01

qgamma(c(0.025, 0.975), shape=shape_post, rate=rate_post)
```

For the given numbers, this returns approximately:

$$(0.527, 0.627).$$

Interpretation: given the model and prior, there is 95% posterior probability that θ lies in this

Problem 3: True or False (concept check)

Decide if each statement is true or false:

- ① The likelihood function is proportional to the posterior distribution.
- ② A 99% credible interval captures 99% of the posterior probability.
- ③ If random variables are exchangeable, we can reorder them without changing their joint distribution.
- ④ Bayesian and frequentist methods always lead to significantly different estimates.

3) Solutions with brief justification

① **False.**

$$\pi(\theta | y) \propto \pi(y | \theta) \pi(\theta).$$

Posterior is proportional to *likelihood times prior*, not likelihood alone.

3) Solutions with brief justification

① **False.**

$$\pi(\theta | y) \propto \pi(y | \theta) \pi(\theta).$$

Posterior is proportional to *likelihood times prior*, not likelihood alone.

② **True.** A 99% credible interval is constructed to contain 0.99 of posterior mass (e.g. equal-tailed, HPD, etc., depending on definition).

3) Solutions with brief justification

① **False.**

$$\pi(\theta | y) \propto \pi(y | \theta) \pi(\theta).$$

Posterior is proportional to *likelihood times prior*, not likelihood alone.

- ② **True.** A 99% credible interval is constructed to contain 0.99 of posterior mass (e.g. equal-tailed, HPD, etc., depending on definition).
- ③ **True.** Exchangeability means the joint distribution is invariant under permutations:

$$\pi(y_1, \dots, y_N) = \pi(y_{\sigma(1)}, \dots, y_{\sigma(N)}) \quad \forall \text{ permutations } \sigma.$$

3) Solutions with brief justification

- ① **False.**

$$\pi(\theta | y) \propto \pi(y | \theta) \pi(\theta).$$

Posterior is proportional to *likelihood times prior*, not likelihood alone.

- ② **True.** A 99% credible interval is constructed to contain 0.99 of posterior mass (e.g. equal-tailed, HPD, etc., depending on definition).
- ③ **True.** Exchangeability means the joint distribution is invariant under permutations:

$$\pi(y_1, \dots, y_N) = \pi(y_{\sigma(1)}, \dots, y_{\sigma(N)}) \quad \forall \text{ permutations } \sigma.$$

- ④ **False.** When n is large and the prior is weak (or regular), Bayesian and frequentist conclusions often *nearly coincide* (heuristically: posterior dominated by likelihood; formally: Bernstein–von Mises type results).

Problem 4: Pareto model with unknown shape

Pareto with scale $\alpha = 1$ and shape $\beta > 0$:

$$\pi(x | \beta) = \frac{\beta}{x^{\beta+1}}, \quad x > 1.$$

Data y_1, \dots, y_N i.i.d. from this model.

Prior:

$$\beta \sim \text{Gamma}(a, b) \quad (\text{shape } a, \text{ rate } b).$$

Task

Derive the posterior $\pi(\beta | \mathbf{y})$.

4) Likelihood for Pareto shape β

Likelihood:

$$\pi(\mathbf{y} \mid \beta) = \prod_{i=1}^N \frac{\beta}{y_i^{\beta+1}} = \beta^N \prod_{i=1}^N y_i^{-(\beta+1)}.$$

4) Likelihood for Pareto shape β

Likelihood:

$$\pi(\mathbf{y} \mid \beta) = \prod_{i=1}^N \frac{\beta}{y_i^{\beta+1}} = \beta^N \prod_{i=1}^N y_i^{-(\beta+1)}.$$

Separate the β -dependent part:

$$\prod_{i=1}^N y_i^{-(\beta+1)} = \left(\prod_{i=1}^N y_i^{-1} \right) \cdot \left(\prod_{i=1}^N y_i^{-\beta} \right).$$

The first bracket does not involve β (constant for the posterior kernel).

4) Likelihood for Pareto shape β

Likelihood:

$$\pi(\mathbf{y} \mid \beta) = \prod_{i=1}^N \frac{\beta}{y_i^{\beta+1}} = \beta^N \prod_{i=1}^N y_i^{-(\beta+1)}.$$

Separate the β -dependent part:

$$\prod_{i=1}^N y_i^{-(\beta+1)} = \left(\prod_{i=1}^N y_i^{-1} \right) \cdot \left(\prod_{i=1}^N y_i^{-\beta} \right).$$

The first bracket does not involve β (constant for the posterior kernel).

Rewrite the second bracket using logs:

$$\prod_{i=1}^N y_i^{-\beta} = \exp \left(-\beta \sum_{i=1}^N \log y_i \right).$$

So (up to constants):

$$\pi(\mathbf{y} \mid \beta) \propto \beta^N \exp\left(-\beta \sum_{i=1}^N \log y_i\right).$$

4) Posterior: Gamma conjugacy

Prior:

$$\pi(\beta) \propto \beta^{a-1} e^{-b\beta}.$$

4) Posterior: Gamma conjugacy

Prior:

$$\pi(\beta) \propto \beta^{a-1} e^{-b\beta}.$$

Posterior kernel:

$$\begin{aligned}\pi(\beta \mid \mathbf{y}) &\propto \pi(\mathbf{y} \mid \beta) \pi(\beta) \\ &\propto \left[\beta^N e^{-\beta \sum \log y_i} \right] \cdot \left[\beta^{a-1} e^{-b\beta} \right] \\ &= \beta^{(N+a)-1} \exp\left(-\beta \left(b + \sum_{i=1}^N \log y_i \right)\right).\end{aligned}$$

4) Posterior: Gamma conjugacy

Prior:

$$\pi(\beta) \propto \beta^{a-1} e^{-b\beta}.$$

Posterior kernel:

$$\begin{aligned}\pi(\beta \mid \mathbf{y}) &\propto \pi(\mathbf{y} \mid \beta) \pi(\beta) \\ &\propto \left[\beta^N e^{-\beta \sum \log y_i} \right] \cdot \left[\beta^{a-1} e^{-b\beta} \right] \\ &= \beta^{(N+a)-1} \exp\left(-\beta \left(b + \sum_{i=1}^N \log y_i \right)\right).\end{aligned}$$

Recognise Gamma:

$$\boxed{\beta \mid \mathbf{y} \sim \text{Gamma}\left(N + a, b + \sum_{i=1}^N \log y_i\right)}.$$

Sanity check

Summary: the patterns you should recognise

- **Likelihood from i.i.d.:** $\pi(\mathbf{y} \mid \theta) = \prod_i \pi(y_i \mid \theta)$.
- **MLE:** maximise $\log L(\theta)$ by differentiation.
- **Conjugacy:** prior \times likelihood keeps the same family:
 - Geom/Bernoulli-type p with Beta prior \Rightarrow Beta posterior.
 - Gamma rate parameter with Gamma/Exp prior \Rightarrow Gamma posterior.
 - Pareto shape with Gamma prior \Rightarrow Gamma posterior.
- **Credible intervals:** posterior quantiles (e.g. `qgamma`).

One-line Bayes

Posterior \propto Likelihood \times Prior.