3.4 Prediction: Posterior Predictive Distributions

From parameter inference to forecasting the next data points

4BIC
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Inference vs prediction: what changes?

Inference (what we've done so far)

You observe data Yi,..., Yy and build a model with parameter 6.

Prior m() —  Posterior (6 | y).
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Inference vs prediction: what changes?

Inference (what we've done so far)

You observe data Yi,..., Yy and build a model with parameter 6.

Prior m() —  Posterior (6 | y).

Prediction (the extra question)

Now ask:
“What are the next data points likely to be?”

Formally, introduce a future observation Z and want the distribution

m(z | y)-
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Inference vs prediction: what changes?

Inference (what we've done so far)

You observe data Yi,..., Yy and build a model with parameter 6.

Prior m() —  Posterior (6 | y).

Prediction (the extra question)

Now ask:
“What are the next data points likely to be?”

Formally, introduce a future observation Z and want the distribution

m(z | y)-

Key message

Inference learns parameters. Prediction learns future outcomes, and must propagate parameter
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Definition 3.3: Posterior predictive distribution

@ Observe data y under a model parameterised by 6.
@ Choose a prior m(#) and compute posterior 7(6 | y).

@ Interested in a future observation Z generated by the same model.
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Definition 3.3: Posterior predictive distribution

@ Observe data y under a model parameterised by 6.
@ Choose a prior m(#) and compute posterior 7(6 | y).

@ Interested in a future observation Z generated by the same model.

Posterior predictive (mixture form)

n(z1y)= [ w(z|0)(0 | y) b
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Definition 3.3: Posterior predictive distribution

@ Observe data y under a model parameterised by 6.
@ Choose a prior m(#) and compute posterior 7(6 | y).

@ Interested in a future observation Z generated by the same model.

Posterior predictive (mixture form)

n(z1y)= [ w(z|0)(0 | y) b

One-sentence interpretation

It is the model’s prediction 7(z | ) averaged over the posterior uncertainty in 6.
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The historical intuition: Bayes and the beanbag

Think of Bayes repeatedly throwing a beanbag over his shoulder and recording where it lands.
@ Past observations: y (where it landed previously).
@ Unknown “parameter”: 6 (the underlying tendency / bias).

@ Next throw: Z (where will the next beanbag land?).
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The historical intuition: Bayes and the beanbag

(Story / intuition)

Think of Bayes repeatedly throwing a beanbag over his shoulder and recording where it lands.
@ Past observations: y (where it landed previously).
@ Unknown “parameter”: 6 (the underlying tendency / bias).

@ Next throw: Z (where will the next beanbag land?).

A\

What does Bayes really want?
Not only “what is 87", but also:

“Given what I've seen, where will the next one land?”

That is exactly m(z | y).
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Thomas Bayes: the “beanbag” (billiard table) experiment

The story (why this appears in Bayes' original essay)

Imagine a flat table.
@ A ball/beanbag is tossed (or rolled) onto the table and lands at some position.
@ Bayes repeats this many times and records where the toss lands.

@ He wants to use past tosses to predict the next one.
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Thomas Bayes: the “beanbag” (billiard table) experiment

The story (why this appears in Bayes' original essay)

Imagine a flat table.
@ A ball/beanbag is tossed (or rolled) onto the table and lands at some position.
@ Bayes repeats this many times and records where the toss lands.

@ He wants to use past tosses to predict the next one.

Modern translation

e Past data: Yi,..., Y, (previous landing outcomes)
@ Unknown “bias” parameter: 6 (how likely the toss is to land in a region)

e Future outcome: Z (next landing outcome)
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What the beanbag story teaches

Two uncertainties

o Parameter uncertainty: we do not know 6 exactly.

@ Outcome randomness: even if § were known, the next toss is still random.
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What the beanbag story teaches

Two uncertainties

o Parameter uncertainty: we do not know 6 exactly.

@ Outcome randomness: even if § were known, the next toss is still random.

Posterior predictive combines them

(z | data) = / (2| 0)7(0 | data) db.

It averages the next-outcome model over all plausible 6 values.
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What the beanbag story teaches

Two uncertainties

o Parameter uncertainty: we do not know 6 exactly.

@ Outcome randomness: even if § were known, the next toss is still random.

Posterior predictive combines them

(2 | data) = / (2 | 0) 7 (0 | data) do.

It averages the next-outcome model over all plausible 6 values.

A\,

Why it feels reasonable
If the data strongly pin down 6, the predictive becomes sharp. If the data are weak, the
predictive stays diffuse (more cautious).
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What do the two factors mean?

Sampling model for new data.

Fix a candidate parameter value 6.
Ask: “If 0 were true, how likely is each z?"
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What do the two factors mean?

(0 | y)
weight

Sampling model for new data. -
m(z | 0)

Fix a candidate parameter value 6.
“ . . " average
Ask: “If 0 were true, how likely is each z?
m(z|y)

Posterior over parameters.

After seeing y, which 0 values are plausible, and
how plausible?
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What do the two factors mean?

(0 | y)
weight

Sampling model for new data. -
m(z | 0)

Fix a candidate parameter value 6.
“ . . " average
Ask: “If 0 were true, how likely is each z?
m(z|y)

Posterior over parameters.

After seeing y, which 0 values are plausible, and
how plausible?

Mixture picture

For each 6 you get a different predictive curve m(z | f). The posterior predictive is the
weighted average of all those curves.
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A “mental algorithm” for prediction

Two-stage sampling view (very important intuition)

To draw a predictive sample Z* ~ 7(z | y):
Q Sample 6* ~ (0 | y) (pick a plausible world)
@ Sample Z* ~ 7(z | 6%) (simulate the next outcome)
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A “mental algorithm” for prediction

Two-stage sampling view (very important intuition)

To draw a predictive sample Z* ~ 7(z | y):
Q Sample 6* ~ (0 | y) (pick a plausible world)
@ Sample Z* ~ 7(z | 6%) (simulate the next outcome)

Even if the integral is messy, simulation often remains simple.
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Why “constants don't matter” breaks here

Earlier: posterior up to proportionality

For parameter inference we often write

(0 | y) o< w(y | 0)m(6)

and say “ignore the normalising constant”.
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Why “constants don't matter” breaks here

Earlier: posterior up to proportionality

For parameter inference we often write

(0 | y) o< w(y | 0)m(6)

and say “ignore the normalising constant”.

But now we want actual probabilities for z

The posterior predictive 7(z | y) is a proper density/pmf in z. If you want to compute
numbers like Pr(Z < 8| y), you need the correct normalisation.
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Why “constants don't matter” breaks here

Earlier: posterior up to proportionality

For parameter inference we often write

(0 | y) o< w(y | 0)m(6)

and say “ignore the normalising constant”.

But now we want actual probabilities for z

The posterior predictive 7(z | y) is a proper density/pmf in z. If you want to compute
numbers like Pr(Z < 8| y), you need the correct normalisation.

Practical consequence

You must keep track of constants (or use a known conjugacy result / a computer). That is
why the algebra can feel “painful” in predictive calculations.
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Example 3.6: late coursework submissions (set-up)

Problem

Last year: y = 3 late submissions out of ng = 30 students.
This year: n = 30 students. Predict how many will be late.
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Example 3.6: late coursework submissions (set-up)

Problem

Last year: y = 3 late submissions out of ng = 30 students.
This year: n = 30 students. Predict how many will be late.

Let 0 be the probability a student submits late.

Y | 6 ~ Bin(ng, 6), Z | 6 ~ Bin(n,0).

We assume the same 6 carries over from last year to this year.

\
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Example 3.6: late coursework submissions (set-up)

Problem

Last year: y = 3 late submissions out of ng = 30 students.
This year: n = 30 students. Predict how many will be late.

Let 0 be the probability a student submits late.

Y |0 ~ Bin(n,0),  Z |6 ~ Bin(n,0).

We assume the same 6 carries over from last year to this year.

A\

Prior (Uniform / “non-informative” on [0, 1])

6 ~ Unif[0, 1] = Beta(1, 1).
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Step 1: posterior for 6 (conjugacy)

Beta—Binomial conjugacy

Y | 6 ~ Bin(no, 6), 0 ~ Beta(a, f),

9|y~ Beta(a+y, B+ n —y).
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Step 1: posterior for 6 (conjugacy)

Beta—Binomial conjugacy

Y | 6 ~ Bin(no, 6), 0 ~ Beta(a, f),

9|y~ Beta(a+y, B+ n —y).

Here (np =30,y =3, a=p=1)

0 | y ~ Beta(l+ 3, 1+ 30 — 3) = Beta(4,28).
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Step 1: posterior for 6 (conjugacy)

Beta—Binomial conjugacy

Y | 6 ~ Bin(no, 6), 0 ~ Beta(a, f),

9|y~ Beta(a+y, B+ n —y).

Here (np =30,y =3, a=p=1)

0 | y ~ Beta(l+ 3, 1+ 30 — 3) = Beta(4,28).

Posterior mean (for intuition)

1
= — = 0.125.
4+28 8

E[6|y] =
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Step 2: set up the posterior predictive integral

1
w(z|y) :/0 w(z|6)(8 | y) db.
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Step 2: set up the posterior predictive integral

1
w(z | y) :/0 w(z|8)7(0 ] y) db.

Write each factor

n(z | 6) = (3°> 0(1— ),
,/.[.(9 | y) — B(4:!'28) 04—1(1 _ 9)28—1 _ B(4]"28) 93(1 _ 9)27.
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Step 2: set up the posterior predictive integral

1
w(zry)zjo w(z|8)7(0 ] y) db.

Write each factor

(2] 0) = <3Z°> 67(1 — 0)0-,
7'('(9 | y) — B(4128) 04—1(1 _ 9)28—1 _ B(4T28) 93(1 _ 0)27.

Combine like terms

z

(z]y) = (30) B(4%28) /01 67+3(1 — 0)57-7 do.

- = = = e
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The “cheat step”: recognise a Beta integral

Recall the Beta function

1
B(a, b):/ 211 - £)bL dr.
0
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The “cheat step”: recognise a Beta integral

Recall the Beta function

1
B(a, b):/ 211 - £)bL dr.
0

Match exponents

973 — 0(z+4)717 (1 _ 9)5772 _ (1 _ 9)(5872)71.

1
/ 0773(1 — 0)>" 2 df = B(z + 4,58 — 2).
0

A\
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The “cheat step”: recognise a Beta integral

Recall the Beta function

1
B(a, b) :/ 711 — t)P L dt.
0

Match exponents

973 — 0(z+4)717 (1 _ 9)5772 _ (1 _ 9)(5872)71.

So

1
/ 0773(1 — 0)>" 2 df = B(z + 4,58 — 2).
0

Posterior predictive pmf (Beta—Binomial)

30\ B(z + 4,58 — z)
B(4,28)

Pz =217~ (

z
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Predictive mean (fast route, no summing)

Law of iterated expectation

E[Z | y] = Eqy [EIZ | 6]].
For Z | 6 ~ Bin(30,0), E[Z | ] = 300, hence

E[Z | y] =30E[ | y] =30 - —30-

4 1
4428 8
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Predictive mean (fast route, no summing)

Law of iterated expectation

E[Z | y] = Eqy [EIZ | 6]].
For Z | 6 ~ Bin(30,0), E[Z | ] = 300, hence

E[Z | y] = 30E[f | y] =30-

=30-

4 1
— = 3.75.
4428 8

Interpretation

Given last year's data, we expect about 3.75 students to hand in late this year.
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Computing the pmf in R (Beta via Gamma)

Beta function identity

r(a)r(p)

B(a, b) = TGtb)
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Computing the pmf in R (Beta via Gamma)

Beta function identity

r(a)r(p)

B(a, b) = TGtb)

pmf: choose(n,z) * B(z+alpha, n-z+beta) / B(alpha,beta) num <- gamma(z + alpha) *

gamma(n - z + beta) * gamma(alpha + beta) den <- gamma(alpha) * gamma(beta) *
gamma(n + alpha + beta?

out <- choose(n, z) * (num / den) return(out)
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Check it is a valid pmf + plot

sum(ppd) should be 1 (up to numerical error)

plot(z, ppd, xlab = "z", ylab = "Posterior predictive mass", main = "Posterior
predictive (Beta-Binomial)")
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Check it is a valid pmf + plot

sum(ppd) should be 1 (up to numerical error)
plot(z, ppd, xlab = "z", ylab = "Posterior predictive mass", main = "Posterior

predictive (Beta-Binomial)")

Sanity checks you should always do
e Non-negativity: Pr(Z =z | y) > 0 for all z.
o Sumstol: > (Pr(Z=2z|y)=1
@ Shape makes sense: mode near the expected value.
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Predictive CDF, intervals, and a probability statement

CDF cdf <- cumsum(ppd) cbind(z, cdf)
Probability up to 8 late submissions sum(ppd[z <= 8])
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Predictive CDF, intervals, and a probability statement

CDF cdf <- cumsum(ppd) cbind(z, cdf)
Probability up to 8 late submissions sum(ppd[z <= 8])

Interpreting outputs

e E[Z | y] = 3.75 means: expected number of late submissions is 3.75.
e Pr(Z <8]y)~0.954 means: about a 95.4% chance of up to 8 late submissions.
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Example 3.7: Bayesian linear model (setup)

Fori=1,...,n:
w = XI'TB + &, Ei I}I\:’d (07 U2)a

where x; € RP are fixed covariates and 3 € RP are unknown coefficients.
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Example 3.7: Bayesian linear model (setup)

Fori=1,...,n:
w = XITB + &, Ei I}I\:’d (07 U2)a

where x; € RP are fixed covariates and 3 € RP are unknown coefficients.

Y = XB+e¢, e~ N(0,0%lhxn).
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Example 3.7: Bayesian linear model (setup)

Fori=1,...,n:
»/i = XITB + &, Ei I}I\:’d (07 U2)a

where x; € RP are fixed covariates and 3 € RP are unknown coefficients.

Y = XB+e¢, e~ N(0,0%lhxn).
@ Posterior distribution: 7(5 | y)

@ Posterior predictive for a new covariate x’:

Y =xTB+¢€, & ~N(0,05?)

Find 7(y' | y, x).
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Prior and likelihood

Likelihood

Because Y | 8 ~ N(XB,021),

1
wy18) x o0 ~5rly = X513)
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Prior and likelihood

Likelihood

Because Y | 8 ~ N(XB,021),

1
wy18) x o0 ~5rly = X513)

Prior (Gaussian)

Assume

B~ N(0,c?lhxp)-
So

1
(5) x oxp 5z l115 )
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Why this is convenient

Normal prior + Normal likelihood = Normal posterior (conjugacy).
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Posterior distribution (Gaussian update / Bayes rule for Gaussians)

Posterior is multivariate Normal

Bly ~N(uX)

with

-1
p=(XTX+50XTy T (HXTX+ L) |
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Posterior distribution (Gaussian update / Bayes rule for Gaussians)

Posterior is multivariate Normal

with

-1
p=(XTX+50XTy T (HXTX+ L) |

Interpretation

o X T X measures how informative the design is.
2

"o
2

controls observation noise (less noise = sharper posterior).

@ c? controls prior strength (smaller ¢> = more shrinkage toward 0).
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Connection to ridge regression

OLS estimator (frequentist)

If XTX is invertible (typically n > p),

fors = (XTX) I XTy = arg min ||y — X3
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Connection to ridge regression

OLS estimator (frequentist)

If XTX is invertible (typically n > p),

fors = (XTX) I XTy = arg min ||y — X3

Ridge estimator

B = arg min {lly = XBII3 + A3} = (XX + M) X Ty,

| A\
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Connection to ridge regression
OLS estimator (frequentist)

If XX is invertible (typically n > p),

fors = (XTX) I XTy = arg min ||y — X3

Ridge estimator

e = arg min {|ly = XBI3 + AIBIE} = (XTX + )X Ty.

N

Bayesian link

Posterior mean equals ridge estimator with

2

A="2

= b= XTX4+AN)"IXTy.
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MAP viewpoint: why ridge appears

Posterior mode (MAP)

Buap = arg T (B |y)=arg TS m(y | B)m(B).
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MAP viewpoint: why ridge appears

Posterior mode (MAP)

Buap = arg T (B |y)=arg T m(y | B)m(B).

Take logs and flip sign

Buap = argmax {logn(y | ) + logn(6)}
1 1
~argmin { Tl — X813+ 1913

Multiply by o2:

2
. (o2
B = argmin { Iy — X615+ T 1615 |
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MAP viewpoint: why ridge appears

Posterior mode (MAP)

Buap = arg T (B |y)=arg T m(y | B)m(B).

v

Take logs and flip sign

Buap = arg max {log(y | B) + log 7(B)}

. f1 o 1,0
~argmin { Tl — X813+ 1913

Multiply by o2:

2
. (o2
B = argmin { Iy — X615+ T 1615 |
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Posterior predictive for a new input x’

New observation model

Y =xXTp+¢, e ~N(0,0%), € LB
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Posterior predictive for a new input x’

New observation model

Y =xXTp+¢, e ~N(0,0%), € LB

Posterior predictive definition

m(y' [y, x') = /W(y’ | 8,X')m(B | y)dB.

3.4 Prediction: Posterior Predictive Distributions



Posterior predictive for a new input x’

New observation model

Y =xXTp+¢, e ~N(0,0%), € LB

Posterior predictive definition

m(y' [y, x') = /W(y’ | 8,X')m(B | y)dB.

| \

Key simplification
7(y" | B,x") is Normal and 7(8 | y) is Normal, so the integral is analytic and the posterior
predictive is also Normal.

.
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Posterior predictive via “linear combination of Gaussians”

Write
Y/ _ X,TB + 8,.

Given y, we have 3 | y ~ N(p,X) and &’ ~ N(0,02) independent.
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Posterior predictive via “linear combination of Gaussians”

Write

Y/ _ X,TB —|—8,.
Given y, we have 3 | y ~ N(p,X) and &’ ~ N(0,02) independent.

E[Y' |y, X]=EKX" 8| y] +E['] = x" p.
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Posterior predictive via “linear combination of Gaussians”

Write
Y/ _ X/TB + 8,.

Given y, we have 3 | y ~ N(p,X) and &’ ~ N(0,02) independent.

E[Y' |y, X]=EKX" 8| y] +E['] = x" p.

V.

Var(Y' | y,x') = Var(x'T 8 | y) + Var(¢') = X' Zx' + o2,

.
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Posterior predictive via “linear combination of Gaussians”

Write
Y/ _ X/TB + 8,.

Given y, we have 3 | y ~ N(p,X) and &’ ~ N(0,02) independent.

E[Y' |y, X]=EKX" 8| y] +E['] = x" p.

i A\

Var(Y' | y,x') = Var(x'T 8 | y) + Var(¢') = X' Zx' + o2,

Posterior predictive distribution

| A\

Y|y, x' ~ N(x’Tu, x'TEx + 02>.
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Interpretation: what contributes to predictive uncertainty?

Var(Y' | y,x') = X + o2

parameter uncertainty  irreducible noise
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Interpretation: what contributes to predictive uncertainty?

Var(Y' | y,x') = X T + o2

parameter uncertainty  irreducible noise

o If you have tons of data, ¥ shrinks and x’T Xx’ gets small.

@ Even with infinite data, you cannot beat the observation noise o2.
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Interpretation: what contributes to predictive uncertainty?

Var(Y' | y,x') = X T + o2

parameter uncertainty  irreducible noise

o If you have tons of data, ¥ shrinks and x’T Xx’ gets small.

@ Even with infinite data, you cannot beat the observation noise o2.

Prediction interval

A 95% predictive interval is approximately

x'Tp+1.96vxTEX + 02.

.
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Three common computation routes

1) Closed form (conjugacy)

@ Beta—Binomial = Beta—Binomial predictive
@ Normal-Normal = Normal predictive

o Gaussian linear model (with known ) = Normal predictive
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1) Closed form (conjugacy)

Three common computation routes

@ Beta—Binomial = Beta—Binomial predictive
@ Normal-Normal = Normal predictive

o Gaussian linear model (with known ) = Normal predictive

2) Monte Carlo (works very generally)
Approximate the integral in (3.1) by:

n(z | y)~ Mzmw o ~ (0| ).

Or simulate Z{™ by two-stage sampling.
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1) Closed form (conjugacy)

Three common computation routes

@ Beta—Binomial = Beta—Binomial predictive
@ Normal-Normal = Normal predictive

o Gaussian linear model (with known ) = Normal predictive

2) Monte Carlo (works very generally)
Approximate the integral in (3.1) by:

n(z | y)~ Mzmw o ~ (0| ).

Or simulate Z{™ by two-stage sampling.

3) Approximate posteriors
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3) Approximate posteriors

Laplace approximation, variational Bayes, etc. give an approximate m(6 | y), then plug into
(3.1).
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Monte Carlo

Posterior predictive sampling algorithm

@ Draw M), ... 6M) ~ 7(6 | y).
@ For each draw, simulate Z(™ ~ 7(z | (™).
© Approximate:

M M

1
E[Z\y]%ﬁzz(m), Pr(Z < k|y)~ Z
m=1 m=1
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Monte Carlo

Posterior predictive sampling algorithm

@ Draw M), ... 6M) ~ 7(6 | y).
@ For each draw, simulate Z(™ ~ 7(z | (™).
© Approximate:

M M

1
E[Z\y]zMZZ(’"), Pr(Z < k|y)~ Z
m=1 m=1

Why this is conceptually perfect

It literally follows the Bayesian generative story:

0|y — Z|6.
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Summary: what you must remember

Posterior predictive (core formula)

n(z1y)= [ w(z|6)(0 | y) b
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Summary: what you must remember

Posterior predictive (core formula)

n(z1y)= [ w(z|6)(0 | y) b

Common special cases
@ Beta prior 4+ Binomial likelihood =- Beta posterior, Beta—Binomial posterior predictive.

@ Gaussian linear model with Gaussian prior = Gaussian posterior and Gaussian posterior
predictive.

3.4 Prediction: Posterior Predictive Distributions



Summary: what you must remember

Posterior predictive (core formula)

n(z1y)= [ w(z|6)(0 | y) b

Common special cases

@ Beta prior 4+ Binomial likelihood =- Beta posterior, Beta—Binomial posterior predictive.

@ Gaussian linear model with Gaussian prior = Gaussian posterior and Gaussian posterior
predictive.
Interpretation
“The posterior predictive averages the sampling model for new data over the posterior
uncertainty in the parameters.”
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Quick practice questions (good revision)

© (Concept) Explain why m(z | y) is typically more dispersed than m(z | §) for a plug-in

~

estimate 6.

@ (Beta—-Binomial) If y successes out of ng and prior § ~ Beta(a, 3), write down
Pr(Z=2z|y) for Z|6 ~ Bin(n,9).

© (Linear model) Identify which term in x'T x’ + 0? comes from parameter uncertainty and
which term is irreducible noise.

O (Computation) Describe the two-stage Monte Carlo method to draw from 7 (z | y).
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Optional: one-slide cheat sheet

Object

Formula / meaning

Posterior
Posterior predictive

Predictive mean

Beta—Binomial PPD

Bayes linear posterior

Bayes linear predictive

m(0 [ y) oc(y | 0)m(0)

mw(z|y)=[n(z|0)m(0]y)db

E[Z | y] = Eg,[E[Z | 0]]

Pz =z|y) = (1) & +§(’O’J ;)z )

Bly ~N(E), p=(X"X+02/ )Xy, £ = (LXTX+
=N

4 |y,x’ NN(X/TM, X'TZX/+CT2)
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Non-informative priors: the idea and the snag

Definition 3.4 (informal)

A prior is “non-informative” if it places equal weight across plausible values of 6. On a
bounded interval, this suggests:

6 ~ Unif|a, b).
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Non-informative priors: the idea and the snag

Definition 3.4 (informal)

A prior is “non-informative” if it places equal weight across plausible values of 6. On a
bounded interval, this suggests:

6 ~ Unif|a, b).

But on R this becomes tricky

There is no proper uniform distribution on the entire real line. So “flat” priors are
approximations (e.g. very large-variance Normal).

.
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Non-informative priors: the idea and the snag

Definition 3.4 (informal)

A prior is “non-informative” if it places equal weight across plausible values of 6. On a
bounded interval, this suggests:
6 ~ Unif|a, b).

But on R this becomes tricky

There is no proper uniform distribution on the entire real line. So “flat” priors are
approximations (e.g. very large-variance Normal).

.

Practical takeaway

Uniform(0,1) is genuinely simple for probabilities. For unbounded parameters,
“non-informative” needs more care.
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Unintended consequence: non-informative is not invariant

Example: reparameterisation
Let & ~ Unif(0, 1) with density 7(#) = 1. Define ¢ = 6.
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Unintended consequence: non-informative is not invariant

Example: reparameterisation
Let & ~ Unif(0, 1) with density 7(#) = 1. Define ¢ = 6.

Change of variables

0 =+/¢ and
a1
’d_qs S 2%
>° do 1
7T¢(¢)=7T9(\/5)'d—¢ zl-m, 0<¢<1.
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Unintended consequence: non-informative is not invariant

Example: reparameterisation
Let & ~ Unif(0, 1) with density 7(#) = 1. Define ¢ = 6.

Change of variables

0 =+/¢ and

Meaning

Flat in 0 is not flat in ¢. A “non-informative” prior depends on the parameterisation.
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Picture intuition for the reparameterisation issue

Why does ¢ = 02 bias toward small values?

For 6 € (0,1), squaring makes numbers smaller:

0.32=10.09, 0.8%=0.64.

So lots of € values get “squeezed” near ¢ = 0.
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Picture intuition for the reparameterisation issue

Why does ¢ = 02 bias toward small values?

For 6 € (0,1), squaring makes numbers smaller:

0.32=10.09, 0.8%=0.64.

So lots of € values get “squeezed” near ¢ = 0.

Density behaviour

blows up near ¢ = 0, meaning ¢ is much more
likely to be small.

\
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Picture intuition for the reparameterisation issue

Why does ¢ = 02 bias toward small values?

For 6 € (0,1), squaring makes numbers smaller:

0.32=10.09, 0.8%=0.64.

7o (9)
So lots of € values get “squeezed” near ¢ = 0.
- 1
2/
Density behaviour
1
To(P) = ~—=
PN

blows up near ¢ = 0, meaning ¢ is much more
likely to be small.

Preview
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Summary: what to remember for prediction

Posterior predictive = mixture over posterior

n(z1y)= [ w(z|6)(6 | y) b
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Summary: what to remember for prediction

Posterior predictive = mixture over posterior

n(z1y)= [ w(z|6)(6 | y) b

Interpretation you can always write in words

e 7(z | §): how the model generates new data if 6 were known.
o 7(0 | y): uncertainty about 6 after seeing data.
@ integral: average predictions over all plausible 6 values.
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Summary: what to remember for prediction

Posterior predictive = mixture over posterior

w(z|y)=/w(z|e)w(e|y) do.

Interpretation you can always write in words
e 7(z | §): how the model generates new data if 6 were known.
o 7(0 | y): uncertainty about 6 after seeing data.
@ integral: average predictions over all plausible 6 values.

Example 3.6

Beta prior + Binomial likelihood = Beta posterior, and Binomial + Beta = Beta—Binomial
predictive.
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Revision questions (quick checks)

@ Explain (in one sentence) why m(z | y) is a mixture distribution.

@ In Example 3.6, identify 7(z | €) and 7(6 | y) explicitly.

© Compute E[Z | y] using E[Z | y] =30E[0 | y].

@ Why do “constants” matter more for posterior predictive than for MAP estimation?

© Give an example showing that “uniform prior” is not invariant under reparameterisation.
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