
Lab 3.8: Posterior Distributions
Conjugate and Non-Conjugate Priors

Grid approximation, log-likelihoods, and numerical normalisation

(Computer Lab)
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Lab aim

What you will practise

Working with posterior distributions when:

the prior is conjugate (closed-form posterior exists),
the prior is not conjugate (no simple closed form).

Implementing likelihoods and posteriors in R using built-in density functions.

Numerical normalisation of an unnormalised posterior on a grid (Trapezoidal rule).

Extracting summaries: posterior mode (MAP), posterior mean, visual comparison.

Key idea

Even if we cannot write down a posterior in closed form, we can still compute with it
numerically.
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Conjugate priors (definition)

Definition (conjugacy)

A prior distribution π(θ) is a conjugate prior for a likelihood model π(y | θ) if the posterior
π(θ | y) belongs to the same distributional family as the prior:

π(θ | y) ∝ π(y | θ)π(θ).

Conjugacy is convenient: the posterior has a known form (e.g. Beta–Binomial,
Gamma–Poisson).

Sometimes conjugate priors are not appropriate (expert constraints, interpretability).

Then we rely on computation: grids, numerical integration, simulation.
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Example 3.12: Data (goals in 50 games)

Data

We observe total number of goals in each of 50 games:

y <- c(2, 6, 2, 3, 4, 3, 4, 3, 1, 2, 3, 2, 6, 6, 2, 3, 5, 1, 2, 2,

4, 2, 5, 3, 6, 4, 1, 2, 7, 8, 4, 3, 7, 3, 3, 5, 2, 6, 1, 3,

7, 4, 2, 6, 8, 8, 4, 5, 7, 4)

hist(y, main = "", xlab = "Number of goals scored")

mean(y)

The sample mean is about 3.92.

A Poisson model is a natural first model for counts.

(Computer Lab) Lab 3.8: Posterior DistributionsConjugate and Non-Conjugate Priors 4 / 11



Example 3.12: Data (goals in 50 games)

Data

We observe total number of goals in each of 50 games:

y <- c(2, 6, 2, 3, 4, 3, 4, 3, 1, 2, 3, 2, 6, 6, 2, 3, 5, 1, 2, 2,

4, 2, 5, 3, 6, 4, 1, 2, 7, 8, 4, 3, 7, 3, 3, 5, 2, 6, 1, 3,

7, 4, 2, 6, 8, 8, 4, 5, 7, 4)

hist(y, main = "", xlab = "Number of goals scored")

mean(y)

The sample mean is about 3.92.

A Poisson model is a natural first model for counts.

(Computer Lab) Lab 3.8: Posterior DistributionsConjugate and Non-Conjugate Priors 4 / 11



Poisson likelihood model

Model

Y1, . . . ,Yn | λ i .i .d .∼ Poisson(λ), n = 50.

Poisson pmf:

Pr(Y = y | λ) = e−λλy

y !
, y ∈ {0, 1, 2, . . . }, λ > 0.

Likelihood

π(y | λ) =
n∏

i=1

e−λλyi

yi !
= e−nλλ

∑n
i=1 yi

n∏
i=1

1

yi !
.
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Computing likelihood and log-likelihood in R

Why log-likelihood?

Likelihood values can be extremely small (underflow), so we often compute on the log scale.

lambda <- seq(0, 10, 0.01) # grid

likelihood.function <- function(lambda, y) prod(dpois(y, lambda))

loglik.function <- function(lambda, y) sum(dpois(y, lambda, log = TRUE))

likelihood <- sapply(lambda, likelihood.function, y = y)

loglik <- sapply(lambda, loglik.function, y = y)

plot(lambda, likelihood, xlab = expression(lambda),

ylab = "likelihood", type = "l")

plot(lambda, loglik, xlab = expression(lambda),

ylab = "log-likelihood", type = "l")
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Trapezoidal rule (normalising a grid posterior)

Trapezoidal rule

On a grid a = x0 < x1 < · · · < xn = b with spacing h,∫ b

a
f (x) dx ≈ h

2

(
f (x0) + f (xn) + 2

n−1∑
i=1

f (xi )
)
.
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Posterior on a grid + trapezoidal normalisation

lambda <- seq(0, 10, 0.01)

h <- 0.01

likelihood <- sapply(lambda, function(lam) prod(dpois(y, lam)))

prior <- dnorm(lambda, mean = 5, sd = 1)

post_unnorm <- likelihood * prior

Zhat <- (h/2) * (post_unnorm[1] + post_unnorm[length(post_unnorm)] +

2 * sum(post_unnorm[2:(length(post_unnorm)-1)]))

posterior <- post_unnorm / Zhat

plot(lambda, posterior, type = "l",

xlab = expression(lambda), ylab = "posterior density")

lambda[which.max(posterior)] # MAP on the grid
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Exercise 3.1: show Gamma posterior

Prior

λ ∼ Exp(0.1) ⇒ π(λ) ∝ e−0.1λ.

Posterior kernel

Poisson likelihood kernel: e−nλλ
∑

yi . Then

π(λ | y) ∝ λ
∑

yi e−(n+0.1)λ,

so

λ | y ∼ Gamma
( n∑

i=1

yi + 1, n + 0.1
)

(shape, rate), with n = 50.
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Exercise 3.2: posterior kernel (no closed form)

Model

Y1, . . . ,YN | λ i .i .d .∼ Exp(λ), f (y | λ) = λe−λy , y ≥ 0.

Prior

λ ∼ Beta(α, β), λ ∈ (0, 1).

Posterior (up to proportionality)

π(λ | y) ∝ λN+α−1(1− λ)β−1 exp
(
− λ

N∑
i=1

yi

)
, λ ∈ (0, 1).
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Exercise 3.3: Beta–Binomial conjugacy

Model

X1, . . . ,XN | p i .i .d .∼ Binomial(100, p), p ∼ Beta(α, β).

Let T =
∑N

i=1 Xi and M = 100N.

Posterior

p | x ∼ Beta(α+ T , β +M − T ).

Posterior mean

E[p | x ] = α+ T

α+ β +M
.
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