Lab 3.8: Posterior Distributions

Conjugate and Non-Conjugate Priors

Grid approximation, log-likelihoods, and numerical normalisation

(Computer Lab)
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Lab aim

What you will practise

@ Working with posterior distributions when:

o the prior is conjugate (closed-form posterior exists),
e the prior is not conjugate (no simple closed form).

@ Implementing likelihoods and posteriors in R using built-in density functions.

@ Numerical normalisation of an unnormalised posterior on a grid (Trapezoidal rule).

@ Extracting summaries: posterior mode (MAP), posterior mean, visual comparison.

Key idea

Even if we cannot write down a posterior in closed form, we can still compute with it
numerically.
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Conjugate priors (definition)

Definition (conjugacy)

A prior distribution 7(6) is a conjugate prior for a likelihood model 7(y | 6) if the posterior
7(60 | y) belongs to the same distributional family as the prior:

(0 | y) o m(y | 6)m(6).
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Conjugate priors (definition)

Definition (conjugacy)

A prior distribution 7(6) is a conjugate prior for a likelihood model 7(y | 6) if the posterior
7(60 | y) belongs to the same distributional family as the prior:

(0 | y) o m(y | 6)m(6).

e Conjugacy is convenient: the posterior has a known form (e.g. Beta—Binomial,
Gamma—Poisson).

e Sometimes conjugate priors are not appropriate (expert constraints, interpretability).

@ Then we rely on computation: grids, numerical integration, simulation.
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Example 3.12: Data (goals in 50 games)

We observe total number of goals in each of 50 games:

y <-c(2, 6, 2, 3, 4, 3, 4, 3,1, 2,3, 2,6,6,2,3,5,1, 2, 2,

4, 2,5, 3, 6, 4,1, 2, 7,8, 4, 3, 7,3, 3,5, 2,6, 1, 3,
7, 4, 2, 6, 8, 8, 4, 5, 7, 4)

hist(y, main = "", xlab = "Number of goals scored")

mean (y)
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Example 3.12: Data (goals in 50 games)

We observe total number of goals in each of 50 games:

y <-c(2, 6, 2, 3, 4, 3, 4, 3,1, 2,3, 2,6,6,2,3,5,1, 2, 2,

4, 2,5, 3, 6, 4,1, 2, 7,8, 4, 3, 7,3, 3,5, 2,6, 1, 3,
7, 4, 2, 6, 8, 8, 4, 5, 7, 4)

hist(y, main = "", xlab = "Number of goals scored")

mean (y)

@ The sample mean is about 3.92.

@ A Poisson model is a natural first model for counts.
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Poisson likelihood model

Yi,-., Yo | A FRS- Poisson(\), n = 50.

Poisson pmf:
e M\

Pr(Y =y %) = S,

y€{0,1,2,...}, A>0.
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Poisson likelihood model

Yi,-., Yo | A FRS- Poisson(\), n = 50.

Poisson pmf:
e M\

yl

PY =y |\ = y€{0,1,2,...}, A>0.

Likelihood
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Computing likelihood and log-likelihood in R

Why log-likelihood?

Likelihood values can be extremely small (underflow), so we often compute on the log scale.

lambda <- seq(0, 10, 0.01) # grid

likelihood.function <- function(lambda, y) prod(dpois(y, lambda))
loglik.function <- function(lambda, y) sum(dpois(y, lambda, log = TRUE))

likelihood <- sapply(lambda, likelihood.function, y = y)
loglik <- sapply(lambda, loglik.function, y = y)

plot(lambda, likelihood, xlab = expression(lambda),
ylab = "likelihood", type = "1")

plot(lambda, loglik, xlab = expression(lambda),
ylab = "log-likelihood", type = "1")
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Trapezoidal rule (normalising a grid posterior)

Trapezoidal rule
Onagrida=xyp <x1 <--- < x, = b with spacing h,

n—1

/a i F(x) dx ~ g(f(xo) +f(xn) +2 f(x,-)).

i=1
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Posterior on a grid + trapezoidal normalisation

lambda <- seq(0, 10, 0.01)
h <- 0.01

likelihood <- sapply(lambda, function(lam) prod(dpois(y, lam)))
prior <- dnorm(lambda, mean = 5, sd = 1)

post_unnorm <- likelihood * prior

Zhat <- (h/2) * (post_unnorm[1] + post_unnorm[length(post_unnorm)] +
2 * sum(post_unnorm[2: (length(post_unnorm)-1)]))

posterior <- post_unnorm / Zhat

plot(lambda, posterior, type = "1",
xlab = expression(lambda), ylab = "posterior density")

lambda[which.max(posterior)] # MAP on the grid
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Exercise 3.1: show Gamma posterior

A~ Exp(0.1) = a(\)oce O
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Exercise 3.1: show Gamma posterior

A~Exp(0.1) = 7(\)oce O

Posterior kernel

Poisson likelihood kernel: e™™ )2 Then

| A\

(A | y) )\Zy,-e—(n+o.1)>\7

/\|y~Gamma<§y;—|—l, n—{—O.l)

(shape, rate), with n = 50.
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Exercise 3.2: posterior kernel (no closed form)

Yi, .., Yu | AR Exp()), F(y [ A) =Xe ™, y > 0.
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Exercise 3.2: posterior kernel (no closed form)

Yi, .., Yu | AR Exp()), F(y [ A) =Xe ™, y > 0.

A ~ Beta(a, 8), X € (0,1).
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Exercise 3.2: posterior kernel (no closed form)

Yi, .., Yu | AR Exp()), F(y [ A) =Xe ™, y > 0.

A ~ Beta(a, 8), X € (0,1).

Posterior (up to proportionality)

N
7 | y) oc ANTa=L(1 — y)-1 exp( . )\Zy,-), A€ (0,1).
i=1
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Exercise 3.3: Beta—Binomial conjugacy

Xi,..., Xn | p K Binomial(100, p), p ~ Beta(a, ).

Let T =N, X; and M = 100N.
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Exercise 3.3: Beta—Binomial conjugacy

Xi,..., Xn | p K Binomial(100, p), p ~ Beta(a, ).

Let T =N, X; and M = 100N.

v
Posterior

p|x~Beta(a+ T, f+M-—T).
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Exercise 3.3: Beta—Binomial conjugacy

Xi,..., Xn | p K Binomial(100, p), p ~ Beta(a, ).

Let T =N, X; and M = 100N.

v

Posterior

p|x~Beta(a+ T, f+M-—T).

Vv
Posterior mean

a+ T
Blo X = s
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