
3.4 Prediction: Posterior Predictive Distributions
From parameter inference to forecasting the next data points

4BIC
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Inference vs prediction: what changes?

Inference (what we’ve done so far)

You observe data Y1, . . . ,YN and build a model with parameter θ.

Prior π(θ) −→ Posterior π(θ | y).

Prediction (the extra question)

Now ask:
“What are the next data points likely to be?”

Formally, introduce a future observation Z and want the distribution

π(z | y).

Key message

Inference learns parameters. Prediction learns future outcomes, and must propagate parameter
uncertainty into the forecast.
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Definition 3.3: Posterior predictive distribution

Set-up

Observe data y under a model parameterised by θ.

Choose a prior π(θ) and compute posterior π(θ | y).
Interested in a future observation Z generated by the same model.

Posterior predictive (mixture form)

π(z | y) =
∫

π(z | θ)π(θ | y) dθ.

One-sentence interpretation

It is the model’s prediction π(z | θ) averaged over the posterior uncertainty in θ.
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The historical intuition: Bayes and the beanbag

(Story / intuition)

Think of Bayes repeatedly throwing a beanbag over his shoulder and recording where it lands.

Past observations: y (where it landed previously).

Unknown “parameter”: θ (the underlying tendency / bias).

Next throw: Z (where will the next beanbag land?).

What does Bayes really want?

Not only “what is θ?”, but also:

“Given what I’ve seen, where will the next one land?”

That is exactly π(z | y).
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Thomas Bayes: the “beanbag” (billiard table) experiment

The story (why this appears in Bayes’ original essay)

Imagine a flat table.

A ball/beanbag is tossed (or rolled) onto the table and lands at some position.

Bayes repeats this many times and records where the toss lands.

He wants to use past tosses to predict the next one.

Modern translation

Past data: Y1, . . . ,Yn (previous landing outcomes)

Unknown “bias” parameter: θ (how likely the toss is to land in a region)

Future outcome: Z (next landing outcome)
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What the beanbag story teaches

Two uncertainties

Parameter uncertainty: we do not know θ exactly.

Outcome randomness: even if θ were known, the next toss is still random.

Posterior predictive combines them

π(z | data) =
∫

π(z | θ)π(θ | data) dθ.

It averages the next-outcome model over all plausible θ values.

Why it feels reasonable

If the data strongly pin down θ, the predictive becomes sharp. If the data are weak, the
predictive stays diffuse (more cautious).
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What do the two factors mean?

π(z | θ)
Sampling model for new data.

Fix a candidate parameter value θ.
Ask: “If θ were true, how likely is each z?”

π(θ | y)
Posterior over parameters.

After seeing y , which θ values are plausible, and
how plausible?

π(θ | y)

π(z | θ)

π(z | y)

weight

average

Mixture picture

For each θ you get a different predictive curve π(z | θ). The posterior predictive is the
weighted average of all those curves.
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A “mental algorithm” for prediction

Two-stage sampling view (very important intuition)

To draw a predictive sample Z ⋆ ∼ π(z | y):
1 Sample θ⋆ ∼ π(θ | y) (pick a plausible world)

2 Sample Z ⋆ ∼ π(z | θ⋆) (simulate the next outcome)

Why this is helpful

Even if the integral is messy, simulation often remains simple.
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Why “constants don’t matter” breaks here

Earlier: posterior up to proportionality

For parameter inference we often write

π(θ | y) ∝ π(y | θ)π(θ)

and say “ignore the normalising constant”.

But now we want actual probabilities for z

The posterior predictive π(z | y) is a proper density/pmf in z . If you want to compute
numbers like Pr(Z ≤ 8 | y), you need the correct normalisation.

Practical consequence

You must keep track of constants (or use a known conjugacy result / a computer). That is
why the algebra can feel “painful” in predictive calculations.
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Example 3.6: late coursework submissions (set-up)

Problem

Last year: y = 3 late submissions out of n0 = 30 students.
This year: n = 30 students. Predict how many will be late.

Model

Let θ be the probability a student submits late.

Y | θ ∼ Bin(n0, θ), Z | θ ∼ Bin(n, θ).

We assume the same θ carries over from last year to this year.

Prior (Uniform / “non-informative” on [0, 1])

θ ∼ Unif[0, 1] = Beta(1, 1).
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Step 1: posterior for θ (conjugacy)

Beta–Binomial conjugacy

If
Y | θ ∼ Bin(n0, θ), θ ∼ Beta(α, β),

then
θ | y ∼ Beta(α+ y , β + n0 − y).

Here (n0 = 30, y = 3, α = β = 1)

θ | y ∼ Beta(1 + 3, 1 + 30− 3) = Beta(4, 28).

Posterior mean (for intuition)

E[θ | y ] = 4

4 + 28
=

1

8
= 0.125.
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Step 2: set up the posterior predictive integral

We want

π(z | y) =
∫ 1

0
π(z | θ)π(θ | y) dθ.

Write each factor

π(z | θ) =
(
30

z

)
θz(1− θ)30−z ,

π(θ | y) = 1

B(4, 28)
θ4−1(1− θ)28−1 =

1

B(4, 28)
θ3(1− θ)27.

Combine like terms

π(z | y) =
(
30

z

)
1

B(4, 28)

∫ 1

0
θz+3(1− θ)57−z dθ.
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The “cheat step”: recognise a Beta integral

Recall the Beta function

B(a, b) =

∫ 1

0
ta−1(1− t)b−1 dt.

Match exponents

θz+3 = θ(z+4)−1, (1− θ)57−z = (1− θ)(58−z)−1.

So ∫ 1

0
θz+3(1− θ)57−z dθ = B(z + 4, 58− z).

Posterior predictive pmf (Beta–Binomial)

Pr(Z = z | y) =
(
30

z

)
B(z + 4, 58− z)

B(4, 28)
, z = 0, 1, . . . , 30.

4BIC 3.4 Prediction: Posterior Predictive Distributions 13 / 38



The “cheat step”: recognise a Beta integral

Recall the Beta function

B(a, b) =

∫ 1

0
ta−1(1− t)b−1 dt.

Match exponents

θz+3 = θ(z+4)−1, (1− θ)57−z = (1− θ)(58−z)−1.

So ∫ 1

0
θz+3(1− θ)57−z dθ = B(z + 4, 58− z).

Posterior predictive pmf (Beta–Binomial)

Pr(Z = z | y) =
(
30

z

)
B(z + 4, 58− z)

B(4, 28)
, z = 0, 1, . . . , 30.

4BIC 3.4 Prediction: Posterior Predictive Distributions 13 / 38



The “cheat step”: recognise a Beta integral

Recall the Beta function

B(a, b) =

∫ 1

0
ta−1(1− t)b−1 dt.

Match exponents

θz+3 = θ(z+4)−1, (1− θ)57−z = (1− θ)(58−z)−1.

So ∫ 1

0
θz+3(1− θ)57−z dθ = B(z + 4, 58− z).

Posterior predictive pmf (Beta–Binomial)

Pr(Z = z | y) =
(
30

z

)
B(z + 4, 58− z)

B(4, 28)
, z = 0, 1, . . . , 30.

4BIC 3.4 Prediction: Posterior Predictive Distributions 13 / 38



Predictive mean (fast route, no summing)

Law of iterated expectation

E[Z | y ] = Eθ|y
[
E[Z | θ]

]
.

For Z | θ ∼ Bin(30, θ), E[Z | θ] = 30θ, hence

E[Z | y ] = 30E[θ | y ] = 30 · 4

4 + 28
= 30 · 1

8
= 3.75.

Interpretation

Given last year’s data, we expect about 3.75 students to hand in late this year.
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Computing the pmf in R (Beta via Gamma)

Beta function identity

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

pmf: choose(n,z) * B(z+alpha, n-z+beta) / B(alpha,beta) num <- gamma(z + alpha) *
gamma(n - z + beta) * gamma(alpha + beta) den <- gamma(alpha) * gamma(beta) *
gamma(n + alpha + beta)
out <- choose(n, z) * (num / den) return(out)
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Check it is a valid pmf + plot

sum(ppd) should be 1 (up to numerical error)

plot(z, ppd, xlab = "z", ylab = "Posterior predictive mass", main = "Posterior
predictive (Beta-Binomial)")

Sanity checks you should always do

Non-negativity: Pr(Z = z | y) ≥ 0 for all z .

Sums to 1:
∑n

z=0 Pr(Z = z | y) = 1.

Shape makes sense: mode near the expected value.
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Predictive CDF, intervals, and a probability statement

CDF cdf <- cumsum(ppd) cbind(z, cdf)

Probability up to 8 late submissions sum(ppd[z <= 8])

Interpreting outputs

E[Z | y ] = 3.75 means: expected number of late submissions is 3.75.

Pr(Z ≤ 8 | y) ≈ 0.954 means: about a 95.4% chance of up to 8 late submissions.
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What changed compared to a plug-in estimate?

A common non-Bayesian “plug-in” approach

Estimate θ first (e.g. MLE θ̂ = y/n0 = 3/30 = 0.1), then predict:

Z ≈ Bin(30, 0.1).

Bayesian approach

Instead of fixing θ at one value, we average over θ | y :

π(z | y) =
∫

Bin(z ; 30, θ)π(θ | y) dθ.

Practical implication

Bayesian prediction is typically more uncertain than plug-in prediction (because it includes
parameter uncertainty, not just Binomial noise).
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Example 3.7: Bayesian linear model (setup)

For i = 1, . . . , n:

Yi = x⊤i β + εi , εi
i .i .d∼ N (0, σ2),

where xi ∈ Rp are fixed covariates and β ∈ Rp are unknown coefficients.

Matrix form

Y = Xβ + ε, ε ∼ N (0, σ2In×n).

Two tasks
1 Posterior distribution: π(β | y)
2 Posterior predictive for a new covariate x ′:

Y ′ = x ′⊤β + ε′, ε′ ∼ N (0, σ2)

Find π(y ′ | y , x ′).

4BIC 3.4 Prediction: Posterior Predictive Distributions 19 / 38



Example 3.7: Bayesian linear model (setup)

For i = 1, . . . , n:

Yi = x⊤i β + εi , εi
i .i .d∼ N (0, σ2),

where xi ∈ Rp are fixed covariates and β ∈ Rp are unknown coefficients.

Matrix form

Y = Xβ + ε, ε ∼ N (0, σ2In×n).

Two tasks
1 Posterior distribution: π(β | y)
2 Posterior predictive for a new covariate x ′:

Y ′ = x ′⊤β + ε′, ε′ ∼ N (0, σ2)

Find π(y ′ | y , x ′).

4BIC 3.4 Prediction: Posterior Predictive Distributions 19 / 38



Example 3.7: Bayesian linear model (setup)

For i = 1, . . . , n:

Yi = x⊤i β + εi , εi
i .i .d∼ N (0, σ2),

where xi ∈ Rp are fixed covariates and β ∈ Rp are unknown coefficients.

Matrix form

Y = Xβ + ε, ε ∼ N (0, σ2In×n).

Two tasks
1 Posterior distribution: π(β | y)
2 Posterior predictive for a new covariate x ′:

Y ′ = x ′⊤β + ε′, ε′ ∼ N (0, σ2)

Find π(y ′ | y , x ′).

4BIC 3.4 Prediction: Posterior Predictive Distributions 19 / 38



Prior and likelihood

Likelihood

Because Y | β ∼ N (Xβ, σ2I ),

π(y | β) ∝ exp

(
− 1

2σ2
∥y − Xβ∥22

)
.

Prior (Gaussian)

Assume
β ∼ N (0, c2Ip×p).

So

π(β) ∝ exp

(
− 1

2c2
∥β∥22

)
.
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.

Why this is convenient

Normal prior + Normal likelihood ⇒ Normal posterior (conjugacy).
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Posterior distribution (Gaussian update / Bayes rule for Gaussians)

Posterior is multivariate Normal

β | y ∼ N (µ,Σ)

with

µ = (X⊤X + σ2

c2
I )−1X⊤y , Σ =

(
1
σ2X

⊤X + 1
c2
I
)−1

.

Interpretation

X⊤X measures how informative the design is.

σ2 controls observation noise (less noise ⇒ sharper posterior).

c2 controls prior strength (smaller c2 ⇒ more shrinkage toward 0).
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Connection to ridge regression

OLS estimator (frequentist)

If X⊤X is invertible (typically n > p),

β̂OLS = (X⊤X )−1X⊤y = arg min
β∈Rp

∥y − Xβ∥22.

Ridge estimator

β̂ridge
λ = arg min

β∈Rp

{
∥y − Xβ∥22 + λ∥β∥22

}
= (X⊤X + λI )−1X⊤y .

Bayesian link

Posterior mean equals ridge estimator with

λ =
σ2

c2
, µ = (X⊤X + λI )−1X⊤y .
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MAP viewpoint: why ridge appears

Posterior mode (MAP)

βMAP = argmax
β

π(β | y) = argmax
β

π(y | β)π(β).

Take logs and flip sign

βMAP = argmax
β

{log π(y | β) + log π(β)}

= argmin
β

{
1

σ2
∥y − Xβ∥22 +

1

c2
∥β∥22

}
.

Multiply by σ2:

βMAP = argmin
β

{
∥y − Xβ∥22 +

σ2

c2
∥β∥22

}
.

Symmetry fact

For a multivariate Normal posterior, the mean and mode coincide, so µ = βMAP.
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Posterior predictive for a new input x ′

New observation model

Y ′ = x ′⊤β + ε′, ε′ ∼ N (0, σ2), ε′ ⊥ β.

Posterior predictive definition

π(y ′ | y , x ′) =
∫

π(y ′ | β, x ′)π(β | y) dβ.

Key simplification

π(y ′ | β, x ′) is Normal and π(β | y) is Normal, so the integral is analytic and the posterior
predictive is also Normal.
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Posterior predictive via “linear combination of Gaussians”

Write
Y ′ = x ′⊤β + ε′.

Given y , we have β | y ∼ N (µ,Σ) and ε′ ∼ N (0, σ2) independent.

Mean

E[Y ′ | y , x ′] = E[x ′⊤β | y ] + E[ε′] = x ′⊤µ.

Variance

Var(Y ′ | y , x ′) = Var(x ′⊤β | y) +Var(ε′) = x ′⊤Σx ′ + σ2.

Posterior predictive distribution

Y ′ | y , x ′ ∼ N
(
x ′⊤µ, x ′⊤Σx ′ + σ2

)
.
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Interpretation: what contributes to predictive uncertainty?

Two sources

Var(Y ′ | y , x ′) = x ′⊤Σx ′︸ ︷︷ ︸
parameter uncertainty

+ σ2︸︷︷︸
irreducible noise

.

Intuition

If you have tons of data, Σ shrinks and x ′⊤Σx ′ gets small.

Even with infinite data, you cannot beat the observation noise σ2.

Prediction interval

A 95% predictive interval is approximately

x ′⊤µ± 1.96
√

x ′⊤Σx ′ + σ2.
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Three common computation routes

1) Closed form (conjugacy)

Beta–Binomial ⇒ Beta–Binomial predictive

Normal–Normal ⇒ Normal predictive

Gaussian linear model (with known σ2) ⇒ Normal predictive

2) Monte Carlo (works very generally)

Approximate the integral in (3.1) by:

π(z | y) ≈ 1

M

M∑
m=1

π(z | θ(m)), θ(m) ∼ π(θ | y).

Or simulate Z (m) by two-stage sampling.

3) Approximate posteriors

Laplace approximation, variational Bayes, etc. give an approximate π(θ | y), then plug into
(3.1).
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Monte Carlo

Posterior predictive sampling algorithm

1 Draw θ(1), . . . , θ(M) ∼ π(θ | y).
2 For each draw, simulate Z (m) ∼ π(z | θ(m)).

3 Approximate:

E[Z | y ] ≈ 1

M

M∑
m=1

Z (m), Pr(Z ≤ k | y) ≈ 1

M

M∑
m=1

1{Z (m) ≤ k}.

Why this is conceptually perfect

It literally follows the Bayesian generative story:

θ | y → Z | θ.
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Summary: what you must remember

Posterior predictive (core formula)

π(z | y) =
∫

π(z | θ)π(θ | y) dθ.

Common special cases

Beta prior + Binomial likelihood ⇒ Beta posterior, Beta–Binomial posterior predictive.

Gaussian linear model with Gaussian prior ⇒ Gaussian posterior and Gaussian posterior
predictive.

Interpretation

“The posterior predictive averages the sampling model for new data over the posterior
uncertainty in the parameters.”
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Quick practice questions (good revision)

1 (Concept) Explain why π(z | y) is typically more dispersed than π(z | θ̂) for a plug-in
estimate θ̂.

2 (Beta–Binomial) If y successes out of n0 and prior θ ∼ Beta(α, β), write down
Pr(Z = z | y) for Z | θ ∼ Bin(n, θ).

3 (Linear model) Identify which term in x ′⊤Σx ′ + σ2 comes from parameter uncertainty and
which term is irreducible noise.

4 (Computation) Describe the two-stage Monte Carlo method to draw from π(z | y).

4BIC 3.4 Prediction: Posterior Predictive Distributions 32 / 38



Optional: one-slide cheat sheet

Object Formula / meaning

Posterior π(θ | y) ∝ π(y | θ)π(θ)
Posterior predictive π(z | y) =

∫
π(z | θ)π(θ | y) dθ

Predictive mean E[Z | y ] = Eθ|y [E[Z | θ]]

Beta–Binomial PPD Pr(Z = z | y) =
(
n
z

)B(z + α, n − z + β)

B(α, β)
Bayes linear posterior β | y ∼ N (µ,Σ), µ = (X⊤X +σ2/c2 I )−1X⊤y , Σ = ( 1

σ2X
⊤X +

1
c2 I )

−1

Bayes linear predictive Y ′ | y , x ′ ∼ N (x ′⊤µ, x ′⊤Σx ′ + σ2)
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Non-informative priors: the idea and the snag

Definition 3.4 (informal)

A prior is “non-informative” if it places equal weight across plausible values of θ. On a
bounded interval, this suggests:

θ ∼ Unif[a, b].

But on R this becomes tricky

There is no proper uniform distribution on the entire real line. So “flat” priors are
approximations (e.g. very large-variance Normal).

Practical takeaway

Uniform(0,1) is genuinely simple for probabilities. For unbounded parameters,
“non-informative” needs more care.
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Unintended consequence: non-informative is not invariant

Example: reparameterisation

Let θ ∼ Unif(0, 1) with density π(θ) = 1. Define ϕ = θ2.

Change of variables

θ =
√
ϕ and ∣∣∣∣ dθdϕ

∣∣∣∣ = 1

2
√
ϕ
.

So

πϕ(ϕ) = πθ(
√

ϕ)

∣∣∣∣ dθdϕ
∣∣∣∣ = 1 · 1

2
√
ϕ
, 0 < ϕ < 1.

Meaning

Flat in θ is not flat in ϕ. A “non-informative” prior depends on the parameterisation.
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Picture intuition for the reparameterisation issue

Why does ϕ = θ2 bias toward small values?

For θ ∈ (0, 1), squaring makes numbers smaller:

0.32 = 0.09, 0.82 = 0.64.

So lots of θ values get “squeezed” near ϕ = 0.

Density behaviour

πϕ(ϕ) =
1

2
√
ϕ

blows up near ϕ = 0, meaning ϕ is much more
likely to be small.

ϕ

πϕ(ϕ)

1
2
√
ϕ

Preview

Tomorrow: a principled way to choose priors that behave better under reparameterisation (e.g.
Jeffreys priors).
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Summary: what to remember for prediction

Posterior predictive = mixture over posterior

π(z | y) =
∫

π(z | θ)π(θ | y) dθ.

Interpretation you can always write in words

π(z | θ): how the model generates new data if θ were known.

π(θ | y): uncertainty about θ after seeing data.

integral: average predictions over all plausible θ values.

Example 3.6

Beta prior + Binomial likelihood ⇒ Beta posterior, and Binomial + Beta ⇒ Beta–Binomial
predictive.
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integral: average predictions over all plausible θ values.

Example 3.6

Beta prior + Binomial likelihood ⇒ Beta posterior, and Binomial + Beta ⇒ Beta–Binomial
predictive.
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Revision questions (quick checks)

1 Explain (in one sentence) why π(z | y) is a mixture distribution.

2 In Example 3.6, identify π(z | θ) and π(θ | y) explicitly.
3 Compute E[Z | y ] using E[Z | y ] = 30E[θ | y ].
4 Why do “constants” matter more for posterior predictive than for MAP estimation?

5 Give an example showing that “uniform prior” is not invariant under reparameterisation.
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