
4.5 Approximate Bayesian Computation (ABC)
Likelihood-free inference via rejection from the prior

4.5 Approximate Bayesian Computation (ABC) 1 / 27

Where we are so far: likelihood-based Bayes

So far, our Bayesian workflows assumed the likelihood is easy to work with:

We can evaluate π(y | θ) at many values of θ.

We can evaluate it cheaply, so MCMC / optimisation are feasible.

But sometimes:

the likelihood is not available in closed form, or

it is too expensive to evaluate.

Terminology: methods that do inference without evaluating π(y | θ) are called likelihood-free inference.

4.5 Approximate Bayesian Computation (ABC) 2 / 27

Motivating example: complex weather models (Example 4.6)

Weather forecasting models can be extremely complex:

huge numbers of parameters,

complicated dynamics,

potentially no exact tractable likelihood.

Even if a likelihood can be written down in principle, it may be impractical:

evaluating π(y | θ) may be too slow,

and re-running a full MCMC pipeline every time new data arrive is costly.

Key idea for ABC: often we can still simulate data from the model for a given θ, even if we cannot
compute the likelihood.

4.5 Approximate Bayesian Computation (ABC) 3 / 27

ABC in one sentence

Approximate Bayesian Computation (ABC) is a likelihood-free approach that replaces

“evaluate likelihood of observed data” −→ “simulate fake data and compare to observed data”.

ABC typically needs:

a prior π(θ),

a simulator y⋆ ∼ π(· | θ) (data-generating process),

a notion of closeness (distance and tolerance ε).

Today: two basic ABC variants:

1 ABC with rejection (compare full data),

2 Summary ABC with rejection (compare summary statistics).

4.5 Approximate Bayesian Computation (ABC) 4 / 27

ABC with rejection: algorithm (Definition 4.2)

Goal: approximate the posterior π(θ | y) without computing π(y | θ).

ABC rejection algorithm:

1 Sample θ⋆ ∼ π(θ) (from the prior).

2 Simulate y⋆ ∼ π(· | θ⋆) (generate synthetic data).

3 Accept θ⋆ if ∥y − y⋆∥ < ε for some ε > 0, otherwise reject.

4 Repeat steps 1–3 until you have enough accepted samples.

Interpretation:

We keep parameter values that can generate data similar to what we observed.

Similarity is controlled by a tolerance ε.

4.5 Approximate Bayesian Computation (ABC) 5 / 27

What distribution are we sampling from? (Definition 4.3)

Define the acceptance region
Aε(y

⋆) = {y⋆ : ∥y⋆ − y∥ < ε} .

Then the ABC-rejection samples target the approximate posterior

πε(θ | y) ∝
∫

π(y⋆ | θ)π(θ)1Aε
(y⋆) dy⋆.

Plain English:

For each θ, we look at the probability that simulated data y⋆ lands within distance ε of the
observed data y.

Multiply by the prior, and renormalise.

4.5 Approximate Bayesian Computation (ABC) 6 / 27

A picture: acceptance as a “ball” around the data

Think of y and y⋆ as vectors in Rn.

y1

y2

y

∥y − y⋆∥ < ε

points inside

are accepted

points outside

are rejected

Key message: as dimension n grows, it becomes much harder for random y⋆ to fall inside a small
ε-ball.

4.5 Approximate Bayesian Computation (ABC) 7 / 27

Example 4.7: model setup

We observe data
y1, . . . , y10 ∼ Beta(3, β).

We place a prior on the unknown parameter β:

β ∼ Unif[0, 5].

ABC idea here:

propose β⋆ from the prior,

simulate synthetic data y⋆1 , . . . , y
⋆
10 from Beta(3, β⋆),

accept if simulated data is “close” to observed data.

4.5 Approximate Bayesian Computation (ABC) 8 / 27

Example 4.7: distance and acceptance rule

Choose a distance (here: squared error across all data points):

D =

10∑
i=1

(
yi − y⋆i

)2
.

Acceptance rule:
accept β⋆ if D < ε,

with (in the example) ε = 0.75.

Notes:

This D is just one choice; many distances are possible.

ε controls the approximation–computation trade-off.

4.5 Approximate Bayesian Computation (ABC) 9 / 27

Example 4.7: R code (ABC rejection)

Set Up Example

set.seed(1234)

n <- 10

y <- rbeta(n, 3, 2)

Set Up ABC

n.iter <- 50000

b.store <- numeric(n.iter)

epsilon <- 0.75

Run ABC

for(i in 1:n.iter){

Propose new beta

b <- runif(1, 0, 5)

Simulate data

y.star <- rbeta(n, 3, b)

Compute distance

d <- sum((y - y.star)^2)

Accept / Reject

if(d < epsilon){

b.store[i] <- b

} else{

b.store[i] <- NA

}

}

Diagnostics + plot

sum(is.na(b.store)) # number rejected

hist(b.store, freq = FALSE, xlab = expression(beta), main = "")

abline(v = 2, col = "red") # true value (for demonstration)

4.5 Approximate Bayesian Computation (ABC) 10 / 27

Example 4.7: reading the output

In the provided run (with ε = 0.75):

many proposals are rejected (acceptance rate is low),

the histogram of accepted β⋆ values approximates the posterior shape,

the red vertical line at β = 2 is the true value used to generate y (only for this toy demo).

You can summarise the approximate posterior via:

posterior mean (sample mean of accepted draws),

credible intervals (quantiles of accepted draws).

But: all results can change substantially with ε.

4.5 Approximate Bayesian Computation (ABC) 11 / 27

The big practical question: how do we choose ε?

Choosing ε is application-specific and often difficult.

Two competing effects:

Small ε ⇒ better approximation to π(θ | y), but very low acceptance (slow / few samples).

Large ε ⇒ high acceptance, but poor approximation (can collapse back to the prior).

In practice, common diagnostics are:

acceptance rate (how many draws are not NA),

comparing histograms of the approximate posterior vs the prior,

stability of posterior summaries across nearby ε values.

4.5 Approximate Bayesian Computation (ABC) 12 / 27

Example 4.8: very small tolerance (ε = 0.12)

With ε = 0.12, almost all proposals are rejected.

epsilon <- 0.12

... same loop ...

sum(is.na(b.store)) # almost all rejected

hist(b.store, freq = FALSE, xlab = expression(beta), main = "")

abline(v = 2, col = "red")

mean(b.store, na.rm = TRUE)

quantile(b.store, c(0.025, 0.975), na.rm = TRUE)

Interpretation:

The few accepted samples might be close to the truth,

but with tiny sample size, the histogram / quantiles are very noisy.

4.5 Approximate Bayesian Computation (ABC) 13 / 27

Example 4.9: very large tolerance (ε = 2)

With ε = 2, almost all proposals are accepted.

epsilon <- 2

... same loop ...

sum(is.na(b.store)) # very few rejected

hist(b.store, freq = FALSE, xlab = expression(beta), main = "")

abline(v = 2, col = "red")

Interpretation:

If almost everything is accepted, the accepted β⋆ values look like the prior,

meaning we have learned very little from the data.

4.5 Approximate Bayesian Computation (ABC) 14 / 27

Limiting behaviour (Proposition 4.2)

ABC with rejection interpolates between the prior and the true posterior:

lim
ε→∞

πε(θ | y) D
= π(θ), lim

ε→0
πε(θ | y) D

= π(θ | y).

Why this makes sense:

If ε is huge, almost every y⋆ counts as “close” ⇒ we accept almost every θ⋆ from the prior.

If ε is tiny, only θ⋆ that can generate (almost) the exact observed data are accepted ⇒ we recover
the true posterior in the limit.

4.5 Approximate Bayesian Computation (ABC) 15 / 27

A practical trade-off

The proposition suggests: smaller ε is better.

But in real computation:

Very small ε can mean near-zero acceptance, leading to:

huge run time, or
so few accepted samples that Monte Carlo noise dominates.

Larger ε increases acceptance but can blur the posterior and bias inference.

Rule of thumb: monitor both

acceptance rate and how different the posterior looks from the prior.

4.5 Approximate Bayesian Computation (ABC) 16 / 27

Why ABC with full data struggles: curse of dimensionality

ABC rejection compares full datasets via ∥y − y⋆∥.

As the number of data points n increases:

y and y⋆ live in higher-dimensional space,

the probability that a random y⋆ lands close to y becomes tiny,

to accept anything we often must increase ε,

which degrades the approximation.

Example 4.10 (conceptual): for the Beta example with n = 200, we may need ε > 15 just to get
non-zero acceptance when comparing full data.

4.5 Approximate Bayesian Computation (ABC) 17 / 27

Idea: compare summary statistics instead

Instead of comparing the entire datasets, compare a summary:

S(y) ∈ Rk,

where k is small (e.g. k = 1 for the mean).

Benefit:

lower-dimensional matching is easier,

acceptance rates improve dramatically for large n.

Cost:

we introduce an additional approximation because S(y) throws away information.

4.5 Approximate Bayesian Computation (ABC) 18 / 27

Summary ABC with rejection: algorithm (Definition 4.4)

Summary ABC rejection algorithm:

1 Sample θ⋆ ∼ π(θ).

2 Simulate y⋆ ∼ π(· | θ⋆).
3 Accept θ⋆ if

∥S(y)− S(y⋆)∥ < ε,

otherwise reject.

4 Repeat.

Key difference from basic ABC: we match in the space of summary statistics.

4.5 Approximate Bayesian Computation (ABC) 19 / 27

Approximate posterior for Summary ABC (Proposition 4.3)

Define acceptance set in summary space:

Aε(y
⋆) = {y⋆ : ∥S(y⋆)− S(y)∥ < ε} .

Then the Summary-ABC approximate posterior can be written as

πε(θ | S(y)) ∝
∫

π(y⋆ | θ)π(θ)1Aε(y
⋆) dy⋆.

Same structure as before, but with acceptance defined using S(·) rather than the full data.

4.5 Approximate Bayesian Computation (ABC) 20 / 27

Sufficient statistics: when Summary ABC can be exact

Using summaries generally increases approximation, unless the summary contains all information about
θ.

Definition 4.5 (Sufficient statistic): A statistic S is sufficient for θ if the conditional distribution

π
(
y | S(y)

)
does not depend on θ.

Intuition:

Once you know S(y), the remaining details of y are irrelevant for learning θ.

4.5 Approximate Bayesian Computation (ABC) 21 / 27

Consequence (Proposition 4.4)

If S is sufficient, Summary ABC can recover the true posterior in the small-tolerance limit:

lim
ε→0

πε(θ | S(y)) D
= π(θ | y).

Reality check:

Sufficient statistics typically exist only for “nice” families (e.g. Beta, Gamma, Poisson with
standard sampling models).

In those cases we often can do exact Bayes anyway, so ABC is not necessary.

4.5 Approximate Bayesian Computation (ABC) 22 / 27

Example 4.11: Beta example with mean as summary

Repeat the Beta example but now with:

n = 200 observations,

summary statistic S(y) = ȳ (sample mean),

tolerance ε = 0.001.

Important: the mean is not sufficient for β in Beta(3, β), so there is an additional approximation even
as ε → 0.

4.5 Approximate Bayesian Computation (ABC) 23 / 27

Example 4.11: R code (Summary ABC with mean)

set.seed(1234)

n <- 200

y <- rbeta(n, 3, 2)

n.iter <- 50000

b.store <- numeric(n.iter)

epsilon <- 0.001

for(i in 1:n.iter){

b <- runif(1, 0, 5)

y.star <- rbeta(n, 3, b)

summary distance in 1D (mean)

d <- (mean(y) - mean(y.star))^2

if(d < epsilon){

b.store[i] <- b

} else{

b.store[i] <- NA

}

}

sum(is.na(b.store))

hist(b.store, freq = FALSE, xlab = expression(beta), main = "")

abline(v = 2, col = "red")

4.5 Approximate Bayesian Computation (ABC) 24 / 27

What improved, and what did we pay?

With summary statistics:

Improvement: matching in low dimension is easier, so we can use a much smaller ε and still
accept a reasonable number of draws.

Cost: we are no longer targeting π(θ | y) but rather something closer to

π(θ | S(y)),

which can lose information when S is not sufficient.

Takeaway:

Summary ABC reduces the curse of dimensionality,

but forces you to think carefully about which summaries preserve the information you care about.

4.5 Approximate Bayesian Computation (ABC) 25 / 27

Key takeaways (4.5)

ABC is likelihood-free: it replaces likelihood evaluation by simulation + comparison.

ABC rejection:

propose θ⋆ from the prior,
simulate y⋆,
accept if ∥y − y⋆∥ < ε.

Tolerance ε controls:

ε ↓⇒ better approximation but lower acceptance.

Limits:
ε → ∞ ⇒ recover prior, ε → 0 ⇒ recover posterior (in ideal limit).

Curse of dimensionality motivates Summary ABC: match ∥S(y)− S(y⋆)∥ instead.

If S is sufficient, Summary ABC can be exact as ε → 0; otherwise it introduces extra
approximation.

4.5 Approximate Bayesian Computation (ABC) 26 / 27

Practical diagnostics for ABC

When running ABC in practice, always check:

Acceptance rate: too low ⇒ too few samples; too high ⇒ likely close to the prior.

Sensitivity to ε: do posterior summaries change a lot when you adjust ε slightly?

Prior vs posterior: does the approximate posterior look meaningfully different from the prior?

Choice of distance and summaries: are you matching features of the data that matter for θ?

Next steps (later chapters): more efficient ABC variants (e.g. sequential methods) and links to
MCMC ideas.

4.5 Approximate Bayesian Computation (ABC) 27 / 27

	4.5.1 ABC with Rejection
	Example 4.7: Beta(3,) with Uniform prior
	Choosing : sensitivity (Examples 4.8–4.9)
	4.5.2 Summary ABC with Rejection
	Summary

