4.5 Approximate Bayesian Computation (ABC)

Likelihood-free inference via rejection from the prior

4.5 Approximate Bayesian Computation (ABC) 1/27

Where we are so far: likelihood-based Bayes

So far, our Bayesian workflows assumed the likelihood is easy to work with:
@ We can evaluate 7(y | 6) at many values of 6.

@ We can evaluate it cheaply, so MCMC / optimisation are feasible.

But sometimes:
@ the likelihood is not available in closed form, or

@ it is too expensive to evaluate.

Terminology: methods that do inference without evaluating m(y | 8) are called likelihood-free inference.

4.5 Approximate Bayesian Computation (ABC) 2/27

Motivating example: complex weather models (Example 4.6)

Weather forecasting models can be extremely complex:
@ huge numbers of parameters,
@ complicated dynamics,

@ potentially no exact tractable likelihood.

Even if a likelihood can be written down in principle, it may be impractical:
@ evaluating 7(y | #) may be too slow,

@ and re-running a full MCMC pipeline every time new data arrive is costly.

Key idea for ABC: often we can still simulate data from the model for a given 6, even if we cannot
compute the likelihood.

4.5 Approximate Bayesian Computation (ABC) 3/27

ABC in one sentence

Approximate Bayesian Computation (ABC) is a likelihood-free approach that replaces

“evaluate likelihood of observed data” —— “simulate fake data and compare to observed data”.

ABC typically needs:
@ a prior (),
@ a simulator y* ~ m(- | 0) (data-generating process),

@ a notion of closeness (distance and tolerance).

Today: two basic ABC variants:
@ ABC with rejection (compare full data),

@ Summary ABC with rejection (compare summary statistics).

4.5 Approximate Bayesian Computation (ABC) 4/27

ABC with rejection: algorithm (Definition 4.2)

Goal: approximate the posterior 7(6 | y) without computing m(y | 6).
ABC rejection algorithm:

@ Sample 6* ~ 7(6) (from the prior).

@ Simulate y* ~ 7(- | 8*) (generate synthetic data).

© Accept 0™ if ||y — y*|| < e for some € > 0, otherwise reject.

© Repeat steps 1-3 until you have enough accepted samples.

Interpretation:
@ We keep parameter values that can generate data similar to what we observed.

@ Similarity is controlled by a tolerance .

4.5 Approximate Bayesian Computation (ABC) 5/27

What distribution are we sampling from? (Definition 4.3)

Define the acceptance region
A(y) ={y" : lly" —yl <e}.

Then the ABC-rejection samples target the approximate posterior

(0] y) /ﬂ(y* 1 0)7(6) 1a (") dy™.

Plain English:

@ For each 6, we look at the probability that simulated data y* lands within distance € of the
observed data y.

@ Multiply by the prior, and renormalise.

4.5 Approximate Bayesian Computation (ABC) 6/27

A picture: acceptance as a “ball” around the data

Think of ¥ and y* as vectors in R,

Y2
A points inside
are accepted .
T vl <
/ \\
ll ° y \
| o !
\ i !
\ i /I
\\\ pdints outside
o T are rejected
> U1

Key message: as dimension n grows, it becomes much harder for random y* to fall inside a small
e-ball.

4.5 Approximate Bayesian Computation (ABC) 7/27

Example 4.7: model setup

We observe data
Y1,---, Y10 ~ Beta(3, f).

We place a prior on the unknown parameter 3:

B ~ Unif[0, 5].
ABC idea here:
@ propose (3* from the prior,
@ simulate synthetic data 7, ..., y}, from Beta(3, 8*),

@ accept if simulated data is “close” to observed data.

4.5 Approximate Bayesian Computation (ABC) 8/27

Example 4.7: distance and acceptance rule

Choose a distance (here: squared error across all data points):
10)
D= Z(yz - yz*) :
i=1

Acceptance rule:
accept B* if D <e,
with (in the example) ¢ = 0.75.

Notes:

@ This D is just one choice; many distances are possible.

@ ¢ controls the approximation—computation trade-off.

4.5 Approximate Bayesian Computation (ABC) 9/27

Example 4.7: R code (ABC rejection)

Set Up Example
set.seed(1234)

n <- 10

y <- rbeta(n, 3, 2)

Set Up ABC

n.iter <- 50000

b.store <- numeric(n.iter)
epsilon <- 0.75

Run ABC
for(i in 1:n.iter){

Propose new beta
b <- runif(1, 0, 5)

Simulate data

4.5 Approximate Bayesian Computation (ABC) 10 /27

Example 4.7: reading the output

In the provided run (with ¢ = 0.75):
@ many proposals are rejected (acceptance rate is low),
@ the histogram of accepted 5* values approximates the posterior shape,

@ the red vertical line at 8 = 2 is the true value used to generate y (only for this toy demo).

You can summarise the approximate posterior via:
@ posterior mean (sample mean of accepted draws),

@ credible intervals (quantiles of accepted draws).

But: all results can change substantially with e.

4.5 Approximate Bayesian Computation (ABC) 11/27

The big practical question: how do we choose £7?

Choosing ¢ is application-specific and often difficult.

Two competing effects:
@ Small ¢ = better approximation to 7(6 | y), but very low acceptance (slow / few samples).

@ Large ¢ = high acceptance, but poor approximation (can collapse back to the prior).

In practice, common diagnostics are:
@ acceptance rate (how many draws are not NA),
@ comparing histograms of the approximate posterior vs the prior,

@ stability of posterior summaries across nearby ¢ values.

4.5 Approximate Bayesian Computation (ABC) 12/27

Example 4.8: very small tolerance (¢ = 0.12)

With € = 0.12, almost all proposals are rejected.

epsilon <- 0.12

... same loop ...
sum(is.na(b.store)) # almost all rejected
hist(b.store, freq = FALSE, xlab = expression(beta), main = "")

abline(v = 2, col = "red")

mean(b.store, na.rm = TRUE)
quantile(b.store, c(0.025, 0.975), na.rm = TRUE)

Interpretation:
@ The few accepted samples might be close to the truth,

@ but with tiny sample size, the histogram / quantiles are very noisy.

4.5 Approximate Bayesian Computation (ABC) 13 /27

Example 4.9: very large tolerance (¢ = 2)

With € = 2, almost all proposals are accepted.

epsilon <- 2

... same loop ...

sum(is.na(b.store)) # very few rejected

hist(b.store, freq = FALSE, xlab = expression(beta), main = "")

abline(v = 2, col = "red")

Interpretation:

@ If almost everything is accepted, the accepted 8* values look like the prior,

@ meaning we have learned very little from the data.

4.5 Approximate Bayesian Computation (ABC)

14 /27

Limiting behaviour (Proposition 4.2)

ABC with rejection interpolates between the prior and the true posterior:
lim (0| y) 2 7(0) lim 7.0 |y) 2 (0] y)
emoo y ’ e—0 € y -

Why this makes sense:
@ If £ is huge, almost every y* counts as “close” = we accept almost every 8* from the prior.

@ If ¢ is tiny, only 0* that can generate (almost) the exact observed data are accepted = we recover
the true posterior in the limit.

4.5 Approximate Bayesian Computation (ABC) 15 /27

A practical trade-off

The proposition suggests: smaller ¢ is better.
But in real computation:
@ Very small € can mean near-zero acceptance, leading to:

e huge run time, or
e so few accepted samples that Monte Carlo noise dominates.

@ Larger ¢ increases acceptance but can blur the posterior and bias inference.

Rule of thumb: monitor both

acceptance rate and how different the posterior looks from the prior.

4.5 Approximate Bayesian Computation (ABC) 16 / 27

Why ABC with full data struggles: curse of dimensionality

ABC rejection compares full datasets via ||y — y*||.

As the number of data points n increases:
@ y and y* live in higher-dimensional space,
@ the probability that a random y* lands close to y becomes tiny,
@ to accept anything we often must increase ¢,

@ which degrades the approximation.

Example 4.10 (conceptual): for the Beta example with n = 200, we may need ¢ > 15 just to get
non-zero acceptance when comparing full data.

4.5 Approximate Bayesian Computation (ABC) 17 /27

|dea: compare summary statistics instead

Instead of comparing the entire datasets, compare a summary:
S(y) € R,
where k is small (e.g. k = 1 for the mean).
Benefit:
@ lower-dimensional matching is easier,
@ acceptance rates improve dramatically for large n.
Cost:

@ we introduce an additional approximation because S(y) throws away information.

4.5 Approximate Bayesian Computation (ABC) 18 /27

Summary ABC with rejection: algorithm (Definition 4.4)

Summary ABC rejection algorithm:
© Sample 60* ~ 7(0).
@ Simulate y* ~ 7(- | *).

© Accept 6™ if
1S(y) = Sl <e,

otherwise reject.

© Repeat.

Key difference from basic ABC: we match in the space of summary statistics.

4.5 Approximate Bayesian Computation (ABC) 19 /27

Approximate posterior for Summary ABC (Proposition 4.3)

Define acceptance set in summary space:
Ac(y™) ={y": IS =Sl <<}

Then the Summary-ABC approximate posterior can be written as

(0] S@)) x / w(y* | 0) 7(6) La. (y*) dy".

Same structure as before, but with acceptance defined using S(-) rather than the full data.

4.5 Approximate Bayesian Computation (ABC) 20/27

Sufficient statistics: when Summary ABC can be exact

Using summaries generally increases approximation, unless the summary contains all information about
0.

Definition 4.5 (Sufficient statistic): A statistic S is sufficient for 6 if the conditional distribution

m(y | S(y))

does not depend on 6.

Intuition:

@ Once you know S(y), the remaining details of y are irrelevant for learning 6.

4.5 Approximate Bayesian Computation (ABC) 21/27

Consequence (Proposition 4.4)

If S is sufficient, Summary ABC can recover the true posterior in the small-tolerance limit:

lim (6 S(y) = 7(0 | y).

Reality check:

o Sufficient statistics typically exist only for “nice” families (e.g. Beta, Gamma, Poisson with
standard sampling models).

@ In those cases we often can do exact Bayes anyway, so ABC is not necessary.

4.5 Approximate Bayesian Computation (ABC) 22/27

Example 4.11: Beta example with mean as summary

Repeat the Beta example but now with:
@ n = 200 observations,
@ summary statistic S(y) = § (sample mean),
@ tolerance € = 0.001.

Important: the mean is not sufficient for 5 in Beta(3, 8), so there is an additional approximation even
as € — 0.

4.5 Approximate Bayesian Computation (ABC) 23 /27

Example 4.11: R code (Summary ABC with mean)

set.seed(1234)
n <- 200
y <- rbeta(n, 3, 2)

n.iter <- 50000
b.store <- numeric(n.iter)
epsilon <- 0.001

for(i in 1:n.iter){

b <- runif(1, 0, 5)
y.star <- rbeta(n, 3, b)

summary distance in 1D (mean)
d <- (mean(y) - mean(y.star)) 2

if(d < epsilon){

4.5 Approximate Bayesian Computation (ABC)

What improved, and what did we pay?

With summary statistics:

@ Improvement: matching in low dimension is easier, so we can use a much smaller £ and still
accept a reasonable number of draws.

@ Cost: we are no longer targeting w(0 | y) but rather something closer to
(0| S)),

which can lose information when S is not sufficient.

Takeaway:
@ Summary ABC reduces the curse of dimensionality,

@ but forces you to think carefully about which summaries preserve the information you care about.

4.5 Approximate Bayesian Computation (ABC) 25 /27

Key takeaways (4.5)

@ ABC is likelihood-free: it replaces likelihood evaluation by simulation + comparison.
@ ABC rejection:

e propose 0* from the prior,
e simulate y*,
e accept if ||ly — y*|| < e.

@ Tolerance ¢ controls:

€ = better approximation but lower acceptance.

@ Limits:
€ — 0O = recover prior, € — 0 = recover posterior (in ideal limit).
@ Curse of dimensionality motivates Summary ABC: match ||S(y) — S(y*)]| instead.

o If S is sufficient, Summary ABC can be exact as € — 0; otherwise it introduces extra
approximation.

4.5 Approximate Bayesian Computation (ABC) 26 /27

Practical diagnostics for ABC

When running ABC in practice, always check:
@ Acceptance rate: too low = too few samples; too high = likely close to the prior.
@ Sensitivity to e: do posterior summaries change a lot when you adjust € slightly?
@ Prior vs posterior: does the approximate posterior look meaningfully different from the prior?
@ Choice of distance and summaries: are you matching features of the data that matter for 67

Next steps (later chapters): more efficient ABC variants (e.g. sequential methods) and links to
MCMC ideas.

4.5 Approximate Bayesian Computation (ABC) 27 /27

	4.5.1 ABC with Rejection
	Example 4.7: Beta(3,) with Uniform prior
	Choosing : sensitivity (Examples 4.8–4.9)
	4.5.2 Summary ABC with Rejection
	Summary

