
Rejection Sampling

Rejection Sampling 1 / 30

Chapter 4: two fundamental sampling algorithms

Setting: we want samples from a target density π(x), but cannot sample from it directly.

Fact to utilize: We can often generate Uniform(0,1) random numbers efficiently.

Goal: Use Uniform(0, 1) samples to generate samples from more “exotic” distributions.

Two methods:

1 Inverse transform sampling

2 Rejection sampling

Rejection Sampling 2 / 30

Chapter 4: two fundamental sampling algorithms

Setting: we want samples from a target density π(x), but cannot sample from it directly.

Fact to utilize: We can often generate Uniform(0,1) random numbers efficiently.

Goal: Use Uniform(0, 1) samples to generate samples from more “exotic” distributions.

Two methods:

1 Inverse transform sampling

2 Rejection sampling

Rejection Sampling 2 / 30

Chapter 4: two fundamental sampling algorithms

Setting: we want samples from a target density π(x), but cannot sample from it directly.

Fact to utilize: We can often generate Uniform(0,1) random numbers efficiently.

Goal: Use Uniform(0, 1) samples to generate samples from more “exotic” distributions.

Two methods:

1 Inverse transform sampling

2 Rejection sampling

Rejection Sampling 2 / 30

Chapter 4: two fundamental sampling algorithms

Setting: we want samples from a target density π(x), but cannot sample from it directly.

Fact to utilize: We can often generate Uniform(0,1) random numbers efficiently.

Goal: Use Uniform(0, 1) samples to generate samples from more “exotic” distributions.

Two methods:

1 Inverse transform sampling

2 Rejection sampling

Rejection Sampling 2 / 30

Recap: Inverse transform sampling

Goal: sample X ∼ π when we can work with the CDF F (x) and its inverse F−1.

Rejection Sampling 3 / 30

Recap: Inverse transform sampling

Suppose we want samples from a continuous distribution with CDF F (·).

Idea:

draw U ∼ (0, 1) (a vertical coordinate on the CDF scale)
map it to the corresponding x via x = F−1(U)

x

F (x)

F (x)

U

x = F−1(U)
0

1

Interpretation: Uniform mass on [0, 1] is “relabelled” into the target distribution by the
inverse CDF.

Rejection Sampling 4 / 30

Recap: Inverse transform sampling

Suppose we want samples from a continuous distribution with CDF F (·).

Idea:

draw U ∼ (0, 1) (a vertical coordinate on the CDF scale)
map it to the corresponding x via x = F−1(U)

x

F (x)

F (x)

U

x = F−1(U)
0

1

Interpretation: Uniform mass on [0, 1] is “relabelled” into the target distribution by the
inverse CDF.

Rejection Sampling 4 / 30

Recap: Inverse transform sampling

Suppose we want samples from a continuous distribution with CDF F (·).

Idea:

draw U ∼ (0, 1) (a vertical coordinate on the CDF scale)
map it to the corresponding x via x = F−1(U)

x

F (x)

F (x)

U

x = F−1(U)
0

1

Interpretation: Uniform mass on [0, 1] is “relabelled” into the target distribution by the
inverse CDF.

Rejection Sampling 4 / 30

Inverse transform sampling

Given: continuous CDF F and quantile function F−1.

Algorithm

Repeat:

1 Draw U ∼ Unif(0, 1).

2 Return X = F−1(U).

Guarantee: X has CDF F .

Rejection Sampling 5 / 30

Where inverse transform sampling breaks down

Inverse transform sampling requires:

(i) F (x) is tractable and (ii) F−1(u) is tractable.

Many common families fail one (or both) of these in closed form:

Normal distribution: F involves a non-elementary integral; F−1 not closed form

Beta/Gamma: F−1 not closed form

So we need a second tool: rejection sampling.

Rejection Sampling 6 / 30

Where inverse transform sampling breaks down

Inverse transform sampling requires:

(i) F (x) is tractable and (ii) F−1(u) is tractable.

Many common families fail one (or both) of these in closed form:

Normal distribution: F involves a non-elementary integral; F−1 not closed form

Beta/Gamma: F−1 not closed form

So we need a second tool: rejection sampling.

Rejection Sampling 6 / 30

Rejection sampling

Given: target density π, proposal density q, constant C such that π(x) ≤ Cq(x).

Algorithm

1 Repeat:
1 Sample X ∼ q.
2 Sample U ∼ Unif(0, 1).
3 If U ≤ π(X)/(Cq(X)), accept and output X.

Guarantee: accepted X has density π.

Rejection Sampling 7 / 30

Rejection sampling: intuition

We choose a proposal density q(x) that we can sample from, and a constant C > 0 such that

π(x)

q(x)
≤ C for all x.

Geometric picture:

sample X ∼ q

generate a uniform “height” and accept if it falls under the target curve

rejected samples are thrown away

Rejection Sampling 8 / 30

Rejection sampling: the picture

x

density
C q(x)

π(x)

X1 X2

accept
reject

Acceptance is more likely where π(x) is large relative to the envelope.

Rejection Sampling 9 / 30

Rejection sampling: formal condition

We want to sample from target density π(x).

Assume we can sample from proposal density q(x) and that there exists C > 0 such that

π(x)

q(x)
≤ C for all x where q(x) > 0.

Equivalently:
π(x) ≤ C q(x) for all x.

Interpretation: Cq(x) is an envelope that sits above π(x) everywhere.

Rejection Sampling 10 / 30

Rejection sampling: algorithm (step-by-step)

Inputs: target π, proposal q, constant C with π(x) ≤ Cq(x).

Repeat until you accept:

1 Sample X ∼ q(x).

2 Sample U ∼ (0, 1).

3 Compute acceptance probability

α(X) =
π(X)

C q(X)
.

4 Accept X if U ≤ α(X); otherwise reject and try again.

The accepted X is a valid sample from π.

Rejection Sampling 11 / 30

Why the constant C matters

C scales the proposal: Cq must dominate π.

Bigger C ⇒ easier to satisfy π ≤ Cq but:

α(X) =
π(X)

Cq(X)
gets smaller ⇒ more rejections.

Smaller C (closer envelope) ⇒ higher acceptance rate, but might fail the dominance
condition.

Design principle: choose q and C so that Cq tightly “hugs” π.

Rejection Sampling 12 / 30

Efficiency: three qualitative cases

Think of Cq as a shape over π.

Very inefficient: envelope is far above π (large wasted area)

Reasonably efficient: envelope just touches the maximum of π

Very efficient: envelope closely matches π across its support

Rule of thumb: acceptance rate is roughly

Acc ≈ area under π

area under Cq
.

Since π is a density,
∫
π(x) dx = 1, so

Acc =
1

C
if q is a normalized density and C is valid.

(We will formalize expected acceptance and expected trial counts later.)
Rejection Sampling 13 / 30

Proof sketch that rejection sampling works

Let X ∼ q and U ∼ (0, 1) independent. We accept when

U ≤ π(X)

Cq(x)
.

Consider the density of an accepted draw at value x:

P(X ∈ dx and accept) = q(x) dx · P
(
U ≤ π(x)

Cq(x)

)
.

Since U ∼ Unif(0, 1),

P
(
U ≤ π(x)

Cq(x)

)
=

π(x)

Cq(x)
.

Therefore,

P(X ∈ dx and accept) = q(x) dx · π(x)

Cq(x)
=

1

C
π(x) dx.

Conditioning on acceptance removes the factor 1/C, so the accepted X has density π(x).

Rejection Sampling 14 / 30

Proof sketch that rejection sampling works

Let X ∼ q and U ∼ (0, 1) independent. We accept when

U ≤ π(X)

Cq(x)
.

Consider the density of an accepted draw at value x:

P(X ∈ dx and accept) = q(x) dx · P
(
U ≤ π(x)

Cq(x)

)
.

Since U ∼ Unif(0, 1),

P
(
U ≤ π(x)

Cq(x)

)
=

π(x)

Cq(x)
.

Therefore,

P(X ∈ dx and accept) = q(x) dx · π(x)

Cq(x)
=

1

C
π(x) dx.

Conditioning on acceptance removes the factor 1/C, so the accepted X has density π(x).

Rejection Sampling 14 / 30

Proof sketch that rejection sampling works

Let X ∼ q and U ∼ (0, 1) independent. We accept when

U ≤ π(X)

Cq(x)
.

Consider the density of an accepted draw at value x:

P(X ∈ dx and accept) = q(x) dx · P
(
U ≤ π(x)

Cq(x)

)
.

Since U ∼ Unif(0, 1),

P
(
U ≤ π(x)

Cq(x)

)
=

π(x)

Cq(x)
.

Therefore,

P(X ∈ dx and accept) = q(x) dx · π(x)

Cq(x)
=

1

C
π(x) dx.

Conditioning on acceptance removes the factor 1/C, so the accepted X has density π(x).

Rejection Sampling 14 / 30

Proof sketch that rejection sampling works

Let X ∼ q and U ∼ (0, 1) independent. We accept when

U ≤ π(X)

Cq(x)
.

Consider the density of an accepted draw at value x:

P(X ∈ dx and accept) = q(x) dx · P
(
U ≤ π(x)

Cq(x)

)
.

Since U ∼ Unif(0, 1),

P
(
U ≤ π(x)

Cq(x)

)
=

π(x)

Cq(x)
.

Therefore,

P(X ∈ dx and accept) = q(x) dx · π(x)

Cq(x)
=

1

C
π(x) dx.

Conditioning on acceptance removes the factor 1/C, so the accepted X has density π(x).

Rejection Sampling 14 / 30

Proof sketch that rejection sampling works

Let X ∼ q and U ∼ (0, 1) independent. We accept when

U ≤ π(X)

Cq(x)
.

Consider the density of an accepted draw at value x:

P(X ∈ dx and accept) = q(x) dx · P
(
U ≤ π(x)

Cq(x)

)
.

Since U ∼ Unif(0, 1),

P
(
U ≤ π(x)

Cq(x)

)
=

π(x)

Cq(x)
.

Therefore,

P(X ∈ dx and accept) = q(x) dx · π(x)

Cq(x)
=

1

C
π(x) dx.

Conditioning on acceptance removes the factor 1/C, so the accepted X has density π(x).
Rejection Sampling 14 / 30

Putting it together: what you should be able to do

After this lecture (and lab), you should be able to:

explain why inverse transform fails for many common distributions

state the rejection sampling condition π(x) ≤ Cq(x)

implement accept/reject logic and discuss efficiency qualitatively

Rejection Sampling 15 / 30

Example 4.3

Let

π(y) =
3

4
y(2− y) I[0,2](y), and π(y) = 0 otherwise.

On [0, 2], π(y) = 3
4 (2y − y2) is an upside-down quadratic.

Roots at y = 0 and y = 2.

Maximum at y = 1 (by symmetry or differentiation): π(1) = 3
4 · 1 · (2− 1) = 3

4 .

y

π(y)

3/4

π(y)

Rejection Sampling 16 / 30

Example 4.3

Let

π(y) =
3

4
y(2− y) I[0,2](y), and π(y) = 0 otherwise.

On [0, 2], π(y) = 3
4 (2y − y2) is an upside-down quadratic.

Roots at y = 0 and y = 2.

Maximum at y = 1 (by symmetry or differentiation): π(1) = 3
4 · 1 · (2− 1) = 3

4 .

y

π(y)

3/4

π(y)

Rejection Sampling 16 / 30

Example 4.3

Let

π(y) =
3

4
y(2− y) I[0,2](y), and π(y) = 0 otherwise.

On [0, 2], π(y) = 3
4 (2y − y2) is an upside-down quadratic.

Roots at y = 0 and y = 2.

Maximum at y = 1 (by symmetry or differentiation): π(1) = 3
4 · 1 · (2− 1) = 3

4 .

y

π(y)

3/4

π(y)

Rejection Sampling 16 / 30

Choosing a proposal and the envelope constant

A natural choice: uniform proposal on the correct support.

Let

q(y) =
1

2
I[0,2](y) ⇐⇒ Y ∼ Unif(0, 2).

We need a constant c such that
π(y) ≤ c q(y) for all y.

Since maxy∈[0,2] π(y) = 3/4 and q(y) = 1/2 on [0, 2],

c ≥ maxπ(y)

q(y)
=

3
4
1
2

=
3

2
.

So we can take c=3/2 (tightest envelope, hence most efficient).

Acceptance probability:

P(accept) = E
[
π(Y)

c q(Y)

]
=

1

c
=

2

3
.

Rejection Sampling 17 / 30

Choosing a proposal and the envelope constant

A natural choice: uniform proposal on the correct support.
Let

q(y) =
1

2
I[0,2](y) ⇐⇒ Y ∼ Unif(0, 2).

We need a constant c such that
π(y) ≤ c q(y) for all y.

Since maxy∈[0,2] π(y) = 3/4 and q(y) = 1/2 on [0, 2],

c ≥ maxπ(y)

q(y)
=

3
4
1
2

=
3

2
.

So we can take c=3/2 (tightest envelope, hence most efficient).

Acceptance probability:

P(accept) = E
[
π(Y)

c q(Y)

]
=

1

c
=

2

3
.

Rejection Sampling 17 / 30

Choosing a proposal and the envelope constant

A natural choice: uniform proposal on the correct support.
Let

q(y) =
1

2
I[0,2](y) ⇐⇒ Y ∼ Unif(0, 2).

We need a constant c such that
π(y) ≤ c q(y) for all y.

Since maxy∈[0,2] π(y) = 3/4 and q(y) = 1/2 on [0, 2],

c ≥ maxπ(y)

q(y)
=

3
4
1
2

=
3

2
.

So we can take c=3/2 (tightest envelope, hence most efficient).

Acceptance probability:

P(accept) = E
[
π(Y)

c q(Y)

]
=

1

c
=

2

3
.

Rejection Sampling 17 / 30

Choosing a proposal and the envelope constant

A natural choice: uniform proposal on the correct support.
Let

q(y) =
1

2
I[0,2](y) ⇐⇒ Y ∼ Unif(0, 2).

We need a constant c such that
π(y) ≤ c q(y) for all y.

Since maxy∈[0,2] π(y) = 3/4 and q(y) = 1/2 on [0, 2],

c ≥ maxπ(y)

q(y)
=

3
4
1
2

=
3

2
.

So we can take c=3/2 (tightest envelope, hence most efficient).

Acceptance probability:

P(accept) = E
[
π(Y)

c q(Y)

]
=

1

c
=

2

3
.

Rejection Sampling 17 / 30

Choosing a proposal and the envelope constant

A natural choice: uniform proposal on the correct support.
Let

q(y) =
1

2
I[0,2](y) ⇐⇒ Y ∼ Unif(0, 2).

We need a constant c such that
π(y) ≤ c q(y) for all y.

Since maxy∈[0,2] π(y) = 3/4 and q(y) = 1/2 on [0, 2],

c ≥ maxπ(y)

q(y)
=

3
4
1
2

=
3

2
.

So we can take c=3/2 (tightest envelope, hence most efficient).

Acceptance probability:

P(accept) = E
[
π(Y)

c q(Y)

]
=

1

c
=

2

3
.

Rejection Sampling 17 / 30

Common pitfall (and the fix): sample from the right interval

A very common mistake is to sample Y ∼ Unif(0, 1) when the target lives on [0, 2].

If you only propose on [0, 1], you miss half the support.

Your accepted samples cannot possibly follow π(y) on [0, 2].

Correct first step is:
Y ∼ Unif(0, 2) (not Unif(0, 1)).

Then apply the acceptance test with c = 3/2 and q(y) = 1/2.

Rejection Sampling 18 / 30

Common pitfall (and the fix): sample from the right interval

A very common mistake is to sample Y ∼ Unif(0, 1) when the target lives on [0, 2].

If you only propose on [0, 1], you miss half the support.

Your accepted samples cannot possibly follow π(y) on [0, 2].

Correct first step is:
Y ∼ Unif(0, 2) (not Unif(0, 1)).

Then apply the acceptance test with c = 3/2 and q(y) = 1/2.

Rejection Sampling 18 / 30

Common pitfall (and the fix): sample from the right interval

A very common mistake is to sample Y ∼ Unif(0, 1) when the target lives on [0, 2].

If you only propose on [0, 1], you miss half the support.

Your accepted samples cannot possibly follow π(y) on [0, 2].

Correct first step is:
Y ∼ Unif(0, 2) (not Unif(0, 1)).

Then apply the acceptance test with c = 3/2 and q(y) = 1/2.

Rejection Sampling 18 / 30

Rejection sampling algorithm for this example

With q(y) = 1
2 I[0,2](y) and c = 3

2 :

1 Sample Y ∼ Unif(0, 2).

2 Sample U ∼ Unif(0, 1) independently.

3 Accept Y if

U ≤ π(Y)

c q(Y)
=

3
4Y (2− Y)(

3
2

) (
1
2

) = Y (2− Y).

Otherwise reject and repeat.

So the acceptance test becomes especially clean:

Accept if U ≤ Y (2− Y).

Rejection Sampling 19 / 30

Rejection sampling algorithm for this example

With q(y) = 1
2 I[0,2](y) and c = 3

2 :

1 Sample Y ∼ Unif(0, 2).

2 Sample U ∼ Unif(0, 1) independently.

3 Accept Y if

U ≤ π(Y)

c q(Y)
=

3
4Y (2− Y)(

3
2

) (
1
2

) = Y (2− Y).

Otherwise reject and repeat.

So the acceptance test becomes especially clean:

Accept if U ≤ Y (2− Y).

Rejection Sampling 19 / 30

Rejection sampling algorithm for this example

With q(y) = 1
2 I[0,2](y) and c = 3

2 :

1 Sample Y ∼ Unif(0, 2).

2 Sample U ∼ Unif(0, 1) independently.

3 Accept Y if

U ≤ π(Y)

c q(Y)
=

3
4Y (2− Y)(

3
2

) (
1
2

) = Y (2− Y).

Otherwise reject and repeat.

So the acceptance test becomes especially clean:

Accept if U ≤ Y (2− Y).

Rejection Sampling 19 / 30

R implementation (accept–reject)

Target: pi(y) = (3/4) * y * (2-y) on [0,2]

Proposal: Y ~ Unif(0,2) => q(y)=1/2 on [0,2]

Tight envelope: c = 3/2

Acceptance test simplifies to: U <= Y*(2-Y)

rsample_pi <- function(n){

out <- numeric(n)

i <- 1

while(i <= n){

y <- runif(1, min = 0, max = 2) # propose

u <- runif(1) # acceptance uniform

if(u <= y*(2 - y)){

out[i] <- y

i <- i + 1

}

}

return(out)

}

set.seed(1)

y <- rsample_pi(10000)

mean(y) # should be close to 1 by symmetry

Rejection Sampling 20 / 30

R: visualising accept vs reject (one iteration sketch)

One pedagogical way to visualise: sample a point in the rectangle and keep it if it lies under π.

Draw many proposal points (y, v) uniformly under the envelope height 3/4

and colour by accepted/rejected.

N <- 4000

y <- runif(N, 0, 2)

v <- runif(N, 0, 3/4)

pi_y <- (3/4) * y * (2 - y)

acc <- (v <= pi_y)

plot(y, v, pch=16, cex=0.6, col=ifelse(acc, "black", "gray"),

xlab="y", ylab="v", main="Rejection sampling picture: accept under pi(y)")

overlay pi(y)

ys <- seq(0, 2, length.out=200)

lines(ys, (3/4)*ys*(2-ys), lwd=2)

(Black points are accepted; grey points rejected.)

Rejection Sampling 21 / 30

R: visualising accept vs reject (one iteration sketch)

One pedagogical way to visualise: sample a point in the rectangle and keep it if it lies under π.

Draw many proposal points (y, v) uniformly under the envelope height 3/4

and colour by accepted/rejected.

N <- 4000

y <- runif(N, 0, 2)

v <- runif(N, 0, 3/4)

pi_y <- (3/4) * y * (2 - y)

acc <- (v <= pi_y)

plot(y, v, pch=16, cex=0.6, col=ifelse(acc, "black", "gray"),

xlab="y", ylab="v", main="Rejection sampling picture: accept under pi(y)")

overlay pi(y)

ys <- seq(0, 2, length.out=200)

lines(ys, (3/4)*ys*(2-ys), lwd=2)

(Black points are accepted; grey points rejected.)

Rejection Sampling 21 / 30

R: visualising accept vs reject (one iteration sketch)

One pedagogical way to visualise: sample a point in the rectangle and keep it if it lies under π.

Draw many proposal points (y, v) uniformly under the envelope height 3/4

and colour by accepted/rejected.

N <- 4000

y <- runif(N, 0, 2)

v <- runif(N, 0, 3/4)

pi_y <- (3/4) * y * (2 - y)

acc <- (v <= pi_y)

plot(y, v, pch=16, cex=0.6, col=ifelse(acc, "black", "gray"),

xlab="y", ylab="v", main="Rejection sampling picture: accept under pi(y)")

overlay pi(y)

ys <- seq(0, 2, length.out=200)

lines(ys, (3/4)*ys*(2-ys), lwd=2)

(Black points are accepted; grey points rejected.)
Rejection Sampling 21 / 30

When C is tight

Figure: When envelope constant C is tight, the rejection sampling can be fairly efficient.
Rejection Sampling 22 / 30

When C is badly chosen

Figure: When envelope constant C is not tight, the rejection sampling can be much less efficient.

Rejection Sampling 23 / 30

Proposition 4.1 (Efficiency)

Proposition 4.1. In a rejection sampling algorithm with envelope constant c, the number of proposals
needed until one sample is accepted follows a geometric distribution with success probability 1/c. In
particular, the mean number of proposals per accepted sample is c.

Interpretation:

Smaller c ⇒ higher acceptance rate ⇒ more efficient.

Tight envelopes (minimal c) are best, when possible.

Rejection Sampling 24 / 30

Proposition 4.1 (Efficiency)

Proposition 4.1. In a rejection sampling algorithm with envelope constant c, the number of proposals
needed until one sample is accepted follows a geometric distribution with success probability 1/c. In
particular, the mean number of proposals per accepted sample is c.
Interpretation:

Smaller c ⇒ higher acceptance rate ⇒ more efficient.

Tight envelopes (minimal c) are best, when possible.

Rejection Sampling 24 / 30

Lab preview: what you will code

Inverse transform sampling lab tasks typically look like:

derive F and F−1 for a given distribution (when possible)

generate many samples using F−1(U)

validate: histogram vs theoretical density, sample mean/variance checks

Rejection sampling lab tasks typically look like:

choose a proposal q and constant C

implement accept/reject

estimate acceptance rate empirically

compare different envelopes for efficiency

Rejection Sampling 25 / 30

Why should we care about developing good sampling algorithms?

Because in Bayesian inference we often need samples from a posterior like

π(θ | y) ∝ π(y | θ)π(θ),

and this posterior is often:

not in a conjugate family,

high-dimensional,

only known up to a normalising constant,

difficult to sample from directly.

In many real problems, sampling is the computational bottleneck of Bayesian inference.

Rejection Sampling 26 / 30

Why should we care about developing good sampling algorithms?

Because in Bayesian inference we often need samples from a posterior like

π(θ | y) ∝ π(y | θ)π(θ),

and this posterior is often:

not in a conjugate family,

high-dimensional,

only known up to a normalising constant,

difficult to sample from directly.

In many real problems, sampling is the computational bottleneck of Bayesian inference.

Rejection Sampling 26 / 30

When we have two parameters: full conditionals

Suppose θ = (θ1, θ2) and we cannot sample from π(θ1, θ2 | y) directly, but we can work with the full
conditionals:

π(θ1 | θ2, y), π(θ2 | θ1, y).

This motivates Gibbs sampling (one MCMC method):

θ
(t+1)
2 ∼ π(θ2 | θ(t)1 , y), θ

(t+1)
1 ∼ π(θ1 | θ(t+1)

2 , y).

We are not optimising; we are generating a dependent sequence of samples whose long-run behaviour
matches the target posterior.

Rejection Sampling 27 / 30

When we have two parameters: full conditionals

Suppose θ = (θ1, θ2) and we cannot sample from π(θ1, θ2 | y) directly, but we can work with the full
conditionals:

π(θ1 | θ2, y), π(θ2 | θ1, y).

This motivates Gibbs sampling (one MCMC method):

θ
(t+1)
2 ∼ π(θ2 | θ(t)1 , y), θ

(t+1)
1 ∼ π(θ1 | θ(t+1)

2 , y).

We are not optimising; we are generating a dependent sequence of samples whose long-run behaviour
matches the target posterior.

Rejection Sampling 27 / 30

When we have two parameters: full conditionals

Suppose θ = (θ1, θ2) and we cannot sample from π(θ1, θ2 | y) directly, but we can work with the full
conditionals:

π(θ1 | θ2, y), π(θ2 | θ1, y).

This motivates Gibbs sampling (one MCMC method):

θ
(t+1)
2 ∼ π(θ2 | θ(t)1 , y), θ

(t+1)
1 ∼ π(θ1 | θ(t+1)

2 , y).

We are not optimising; we are generating a dependent sequence of samples whose long-run behaviour
matches the target posterior.

Rejection Sampling 27 / 30

MCMC in pictures (random walk around the posterior)

θ1

θ2

start

Goal:

spend time

proportional

to density

Heuristic: if 90% of posterior mass lies in some region, then about 90% of samples should lie there.

Rejection Sampling 28 / 30

MCMC in pictures (random walk around the posterior)

θ1

θ2

start

Goal:

spend time

proportional

to density

Heuristic: if 90% of posterior mass lies in some region, then about 90% of samples should lie there.

Rejection Sampling 28 / 30

Markov property (why it matters)

In MCMC, the next state depends only on the current state:

P
(
θ(t+1) ∈ B

∣∣ θ(t), θ(t−1), . . .
)
= P

(
θ(t+1) ∈ B

∣∣ θ(t)).

This is the Markov property. It brings:

transition kernels / transition matrices (in discrete state spaces),

stationary distributions,

convergence theorems (under conditions),

diagnostic questions: burn-in, mixing, autocorrelation, effective sample size, . . .

That is the mathematical backbone of Chapter 5.

Rejection Sampling 29 / 30

Markov property (why it matters)

In MCMC, the next state depends only on the current state:

P
(
θ(t+1) ∈ B

∣∣ θ(t), θ(t−1), . . .
)
= P

(
θ(t+1) ∈ B

∣∣ θ(t)).
This is the Markov property. It brings:

transition kernels / transition matrices (in discrete state spaces),

stationary distributions,

convergence theorems (under conditions),

diagnostic questions: burn-in, mixing, autocorrelation, effective sample size, . . .

That is the mathematical backbone of Chapter 5.

Rejection Sampling 29 / 30

Markov property (why it matters)

In MCMC, the next state depends only on the current state:

P
(
θ(t+1) ∈ B

∣∣ θ(t), θ(t−1), . . .
)
= P

(
θ(t+1) ∈ B

∣∣ θ(t)).
This is the Markov property. It brings:

transition kernels / transition matrices (in discrete state spaces),

stationary distributions,

convergence theorems (under conditions),

diagnostic questions: burn-in, mixing, autocorrelation, effective sample size, . . .

That is the mathematical backbone of Chapter 5.

Rejection Sampling 29 / 30

This Friday and next week

More worked examples from Chapter 4 (inverse transform + rejection sampling), and some
remaining topics (Zigguart sampling, ABC).

After reading week: start Chapter 5 Markov chain Monte Carlo:

Gibbs sampling (full-conditionals)
Metropolis–Hastings (accept/reject within a Markov chain)
why it works (stationarity, detailed balance, irreducibility/aperiodicity)

Rejection Sampling 30 / 30

	Recap: inverse transform sampling method
	Rejection (Envelope) Sampling
	Example: Rejection sampling
	Efficiency of rejection sampling
	Motivation for Chapter 5 (MCMC)
	Closing + reminders

