Rejection Sampling

Rejection Sampling 1/30

Chapter 4: two fundamental sampling algorithms

Setting: we want samples from a target density 7(x), but cannot sample from it directly.

Rejection Sampling 2/30

Chapter 4: two fundamental sampling algorithms

Setting: we want samples from a target density 7(x), but cannot sample from it directly.

Fact to utilize: We can often generate Uniform(0,1) random numbers efficiently.

Rejection Sampling 2/30

Chapter 4: two fundamental sampling algorithms

Setting: we want samples from a target density 7(x), but cannot sample from it directly
Fact to utilize: We can often generate Uniform(0,1) random numbers efficiently.

Goal: Use Uniform(0, 1) samples to generate samples from more “exotic” distributions.

Rejection Sampling

Chapter 4: two fundamental sampling algorithms

Setting: we want samples from a target density 7(x), but cannot sample from it directly.
Fact to utilize: We can often generate Uniform(0,1) random numbers efficiently.
Goal: Use Uniform(0, 1) samples to generate samples from more “exotic” distributions.

Two methods:
© Inverse transform sampling

© Rejection sampling

Rejection Sampling 2/30

Recap: Inverse transform sampling

Goal: sample X ~ 7 when we can work with the CDF F(x) and its inverse F~.

Rejection Sampling 3/30

Recap: Inverse transform sampling

Suppose we want samples from a continuous distribution with CDF F(-).

Rejection Sampling 4/30

Recap: Inverse transform sampling

Suppose we want samples from a continuous distribution with CDF F(-).

Idea:
e draw U ~ (0,1) (a vertical coordinate on the CDF scale)
@ map it to the corresponding = via z = F~1(U)

Rejection Sampling 4/30

Recap: Inverse transform sampling

Suppose we want samples from a continuous distribution with CDF F(-).

Idea:
e draw U ~ (0,1) (a vertical coordinate on the CDF scale)
@ map it to the corresponding = via z = F~1(U)

Rejection Sampling 4/30

Inverse transform sampling

Given: continuous CDF F and quantile function F~!.

Algorithm

Repeat:
Q@ Draw U ~ Unif(0,1).
@ Return X = F~1(U).

Guarantee: X has CDF F.

Rejection Sampling 5/30

Where inverse transform sampling breaks down

Inverse transform sampling requires:

(i) F(z) is tractable and (i) F~1(u) is tractable.

Rejection Sampling 6/30

Where inverse transform sampling breaks down

Inverse transform sampling requires:

(i) F(z) is tractable and (i) F~1(u) is tractable.

Many common families fail one (or both) of these in closed form:
e Normal distribution: F involves a non-elementary integral; F~! not closed form

e Beta/Gamma: F'~! not closed form

So we need a second tool: rejection sampling.

Rejection Sampling 6/30

Rejection sampling

Given: target density 7, proposal density ¢, constant C' such that w(z) < Cq(x).

Algorithm

©Q Repeat:
@ Sample X ~ gq.
® Sample U ~ Unif(0, 1).
@ IfU <n(X)/(Cq(X)), accept and output X.

Guarantee: accepted X has density 7.

Rejection Sampling 7/30

Rejection sampling: intuition

We choose a proposal density ¢(z) that we can sample from, and a constant C' > 0 such that

Z((;:)) <C forall z.

Geometric picture:
@ sample X ~ ¢
@ generate a uniform “height” and accept if it falls under the target curve

@ rejected samples are thrown away

Rejection Sampling 8/30

Rejection sampling: the picture

density
Cq(x)
| | reject
1, accept w’/
. l
. . x
X1 Xo

Acceptance is more likely where 7(z) is large relative to the envelope.

Rejection Sampling 9/30

Rejection sampling: formal condition

We want to sample from target density 7(z).

Assume we can sample from proposal density ¢(x) and that there exists C' > 0 such that

(z)

(z)

3

< C for all z where g(z) > 0.

Q

Equivalently:
m(x) < Cq(z) for all x.

Interpretation: Cq(x) is an envelope that sits above 7 (z) everywhere.

Rejection Sampling 10 /30

Rejection sampling: algorithm (step-by-step)

Inputs: target 7, proposal ¢, constant C' with 7(z) < Cq(x).

Repeat until you accept:

Q Sample X ~ ¢g(x).

@ Sample U ~ (0,1).

© Compute acceptance probability
_ m(X)
- Cq(X)

© Accept X if U < a(X); otherwise reject and try again.

a(X)

The accepted X is a valid sample from 7.

Rejection Sampling 11/30

Why the constant C' matters

C scales the proposal: C'q must dominate 7.

Bigger C' = easier to satisfy m < Cq but:

X
a(X) = CT:;(X)) gets smaller = more rejections.

Smaller C' (closer envelope) = higher acceptance rate, but might fail the dominance
condition.

Design principle: choose ¢ and C' so that Cgq tightly “hugs” 7.

Rejection Sampling 12 /30

Efficiency: three qualitative cases

Think of Cq as a shape over .

e Very inefficient: envelope is far above 7 (large wasted area)
o Reasonably efficient: envelope just touches the maximum of 7

@ Very efficient: envelope closely matches 7 across its support
Rule of thumb: acceptance rate is roughly

area under

Accd —————.
area under Cq

Since 7 is a density, [7(z)dx =1, so
| . . : .
Acc = ol if ¢ is a normalized density and C' is valid.

(We will formalize expected acceptance and expected trial counts later.)

Rejection Sampling 13 /30

Proof sketch that rejection sampling works

Let X ~ g and U ~ (0,1) independent. We accept when

m(X)
v= Cq(x)

Rejection Sampling 14 /30

Proof sketch that rejection sampling works

Let X ~ g and U ~ (0,1) independent. We accept when

m(X)
v= Cq(x)

Consider the density of an accepted draw at value z:

P(X € dx and accept) = ¢(x) dx - IF’(U < () > .

Rejection Sampling 14 /30

Proof sketch that rejection sampling works

Let X ~ g and U ~ (0,1) independent. We accept when

m(X)
v= Cq(x)

Consider the density of an accepted draw at value z:

P(X € dx and accept) = ¢(x) dx - IF’(U < () > .

Since U ~ Unif(0, 1),

Rejection Sampling 14 /30

Proof sketch that rejection sampling works

Let X ~ g and U ~ (0,1) independent. We accept when

m(X)
v= Cq(x)

Consider the density of an accepted draw at value z:

P(X € dx and accept) = ¢(x) dx - IF’(U < () > .

Since U ~ Unif(0, 1),

IP<U< (@)) @)

~ Cq(2) Cq(z)
Therefore, (@)
m(x 1
P(X = . - —
(X € dz and accept) = ¢(z) dz Cqx) ~ C m(z)dx

Rejection Sampling 14 /30

Proof sketch that rejection sampling works

Let X ~ g and U ~ (0,1) independent. We accept when

m(X)
v= Cq(x)

Consider the density of an accepted draw at value z:

P(X € dx and accept) = ¢(x) dx - IF’(U < () > .

Since U ~ Unif(0, 1),

P<U< 7r(m)> 7(z)

= Cq(x)) ~ Cyl)
Therefore, (@)
m(x 1
P(X _ . _ L .
(X € dz and accept) = ¢(z) dz Cqx) ~ C m(z)dx

Conditioning on acceptance removes the factor 1/C', so the accepted X has density m(z).

Putting it together: what you should be able to do

After this lecture (and lab), you should be able to:

@ explain why inverse transform fails for many common distributions
@ state the rejection sampling condition w(z) < Cq(x)

@ implement accept/reject logic and discuss efficiency qualitatively

Rejection Sampling 15 /30

Example 4.3

Let
3
m(y) =792 =y loz(y), and 7(y) =0 otherwise.

Rejection Sampling 16 /30

Example 4.3

Let
3
m(y) =792 =y loz(y), and 7(y) =0 otherwise.

@ On [0,2], m(y) = 2(2y — y?) is an upside-down quadratic.
@ Rootsat y =0 and y = 2.

@ Maximum at y = 1 (by symmetry or differentiation): 7(1) = 2 .

Rejection Sampling 16 /30

Example 4.3
Let 3
m(y) = 1 y(2 —y) Lo, (y), and 7(y) = 0 otherwise.

@ On [0,2], m(y) = 2(2y — y?) is an upside-down quadratic.
@ Rootsat y =0 and y = 2.

@ Maximum at y = 1 (by symmetry or differentiation): 7(1) = 2 .

m(y)

A

3/Af-----oo-

Rejection Sampling 16 /30

Choosing a proposal and the envelope constant

A natural choice: uniform proposal on the correct support.

Rejection Sampling 17 /30

Choosing a proposal and the envelope constant

A natural choice: uniform proposal on the correct support.

Let)
q(y) = 5 T2 (y) <= Y ~ Unif(0,2).

Rejection Sampling 17 /30

Choosing a proposal and the envelope constant

A natural choice: uniform proposal on the correct support.
Let

1 .
q(y) = 5 T2 (y) <= Y ~ Unif(0,2).
We need a constant ¢ such that

m(y) < cqly) forall y.

Rejection Sampling 17 /30

Choosing a proposal and the envelope constant

A natural choice: uniform proposal on the correct support.

Let)
q(y) = 5 T2 (y) <= Y ~ Unif(0,2).

We need a constant ¢ such that
m(y) < cqly) forall y.
Since maxyeo,2) 7(y) = 3/4 and ¢q(y) = 1/2 on [0, 2],

. max 7(y) _
— ay)

So we can take (tightest envelope, hence most efficient).

SIS
w

Rejection Sampling 17 /30

Choosing a proposal and the envelope constant

A natural choice: uniform proposal on the correct support.

Let)
q(y) = 5 T2 (y) <= Y ~ Unif(0,2).

We need a constant ¢ such that
m(y) < cqly) forall y.
Since maxyeo,2) 7(y) = 3/4 and ¢q(y) = 1/2 on [0, 2],

¢ > max 7(y) _

q(y)

So we can take (tightest envelope, hence most efficient).

Acceptance probability:

NIEAINIY
w

P(accept) E[m(Y) } _1_ 2

cq(Y) ¢ 3

Rejection Sampling 17 /30

Common pitfall (and the fix): sample from the right interval

A very common mistake is to sample Y ~ Unif(0, 1) when the target lives on [0, 2].

Rejection Sampling 18 /30

Common pitfall (and the fix): sample from the right interval

A very common mistake is to sample Y ~ Unif(0, 1) when the target lives on [0, 2].
@ If you only propose on [0, 1], you miss half the support.

@ Your accepted samples cannot possibly follow 7(y) on [0, 2].

Rejection Sampling 18 /30

Common pitfall (and the fix): sample from the right interval

A very common mistake is to sample Y ~ Unif(0, 1) when the target lives on [0, 2].
@ If you only propose on [0, 1], you miss half the support.
@ Your accepted samples cannot possibly follow 7(y) on [0, 2].

Correct first step is:
Y ~ Unif(0,2) (not Unif(0,1)).
Then apply the acceptance test with ¢ = 3/2 and ¢(y) = 1/2.

Rejection Sampling 18 /30

Rejection sampling algorithm for this example

With q(y) = 1j02(y) and ¢ = 3:

Rejection Sampling 19 /30

Rejection sampling algorithm for this example

With q(y) = 1j02(y) and ¢ = 3:
@ Sample Y ~ Unif(0, 2).
@ Sample U ~ Unif(0, 1) independently.
© Accept Y if

Otherwise reject and repeat.

Rejection Sampling 19 /30

Rejection sampling algorithm for this example

With q(y) = 1j02(y) and ¢ = 3:
@ Sample Y ~ Unif(0, 2).
@ Sample U ~ Unif(0, 1) independently.
© Accept Y if

Otherwise reject and repeat.

So the acceptance test becomes especially clean:

| Accept if U < V(2 Y).|

Rejection Sampling 19 /30

R implementation (accept-reject)

Target: pi(y) = (3/4) x y * (2-y) on [0,2]
Proposal: Y ~ Unif(0,2) => q(y)=1/2 on [0,2]
Tight envelope: c¢ = 3/2

Acceptance test simplifies to: U <= Vx(2-Y)

rsample_pi <- function(n){
out <- numeric(n)
i<-1
while(i <= n){
y <= runif (1, min = 0, max = 2) # propose
u <- runif(1) # acceptance uniform
if(u <= yx(2 - y)){
out[i] <- y
i<-1i+1
}
}

return(out)

Rejection Sampling 20/30

R: visualising accept vs reject (one iteration sketch)

One pedagogical way to visualise: sample a point in the rectangle and keep it if it lies under 7.

Rejection Sampling 21/30

R: visualising accept vs reject (one iteration sketch)

One pedagogical way to visualise: sample a point in the rectangle and keep it if it lies under 7.

Draw many proposal points (y, v) uniformly under the envelope height 3/4
and colour by accepted/rejected.

N <- 4000
y <= runif(N, 0, 2)
v <- runif(N, 0, 3/4)

pi_y <= (3/4) * y x (2 - y)
acc <- (v <= pi_y)

plot(y, v, pch=16, cex=0.6, col=ifelse(acc, "black", "gray"),
xlab="y", ylab="v", main="Rejection sampling picture: accept under pi(y)")

overlay pi(y)
ys <- seq(0, 2, length.out=200)
lines(ys, (3/4)*ys*(2-ys), lwd=2)

Rejection Sampling 21/30

R: visualising accept vs reject (one iteration sketch)

One pedagogical way to visualise: sample a point in the rectangle and keep it if it lies under 7.

Draw many proposal points (y, v) uniformly under the envelope height 3/4
and colour by accepted/rejected.

N <- 4000
y <= runif(N, 0, 2)
v <- runif(N, 0, 3/4)

pi_y <= (3/4) * y x (2 - y)
acc <- (v <= pi_y)

plot(y, v, pch=16, cex=0.6, col=ifelse(acc, "black", "gray"),
xlab="y", ylab="v", main="Rejection sampling picture: accept under pi(y)")

overlay pi(y)
ys <- seq(0, 2, length.out=200)
lines(ys, (3/4)*ys*(2-ys), lwd=2)

Rejection Sampling 21/30

efficient.

=
i
o
Q
— =
> | o 8
a o™ 00
_ c
O =
m 0O
£ €
a— ™ %
o r -
] c
: 2
= 3
g ol
=1 = =
o - = 9] £
2 < B
o +
2 i 2
= SE
>
m. | w]
o < R
0
[|
2 2
aﬁu. c
@ o 3
— — d (%]
] =] c
14 T T T T o
) O
90 4t} 0 00 o
Q
A o
[
>
c
o
42
c
L= 0]
oY) <
= =
R0 v
>
(@) 2
[
C
(]
=

When C is badly chosen

Rejection sampling picture: accept under pi(y

0|
o |
W] » *
(=] " i“‘ .
.a.. :.’:‘.m..‘.:".
Lre '-'.’:, t‘(%‘-'%\.,-)
uQ;‘s
h?f:'f‘.ﬂx » }"5
2 e R 0Tl

-- : Rejection Sa‘mpling i 23/30

Proposition 4.1 (Efficiency)

Proposition 4.1. In a rejection sampling algorithm with envelope constant ¢, the number of proposals
needed until one sample is accepted follows a geometric distribution with success probability 1/c. In
particular, the mean number of proposals per accepted sample is c.

Rejection Sampling 24 /30

Proposition 4.1 (Efficiency)

Proposition 4.1. In a rejection sampling algorithm with envelope constant ¢, the number of proposals
needed until one sample is accepted follows a geometric distribution with success probability 1/c. In
particular, the mean number of proposals per accepted sample is c.

Interpretation:

@ Smaller ¢ = higher acceptance rate = more efficient.

@ Tight envelopes (minimal ¢) are best, when possible.

Rejection Sampling 24 /30

Lab preview: what you will code

Inverse transform sampling lab tasks typically look like:
e derive ' and F~! for a given distribution (when possible)
@ generate many samples using F~1(U)

@ validate: histogram vs theoretical density, sample mean/variance checks

Rejection sampling lab tasks typically look like:
@ choose a proposal ¢ and constant C
@ implement accept/reject
@ estimate acceptance rate empirically

@ compare different envelopes for efficiency

Rejection Sampling 25 /30

Why should we care about developing good sampling algorithms?

Because in Bayesian inference we often need samples from a posterior like

m(0]y) o< 7(y|0)=(H),
and this posterior is often:
@ not in a conjugate family,
@ high-dimensional,
@ only known up to a normalising constant,

@ difficult to sample from directly.

Rejection Sampling 26 /30

Why should we care about developing good sampling algorithms?

Because in Bayesian inference we often need samples from a posterior like

m(0]y) o< 7(y|0)=(H),
and this posterior is often:
@ not in a conjugate family,
@ high-dimensional,
@ only known up to a normalising constant,
@ difficult to sample from directly.

In many real problems, sampling is the computational bottleneck of Bayesian inference.

Rejection Sampling 26 /30

When we have two parameters: full conditionals

Suppose § = (61, 62) and we cannot sample from (601,62 | y) directly, but we can work with the full
conditionals:

(01 | O2,9), (0 | 01,y).

Rejection Sampling 27 /30

When we have two parameters: full conditionals

Suppose § = (61, 62) and we cannot sample from (601,62 | y) directly, but we can work with the full
conditionals:

w1 | 62,y), 7w(02]61,y)
This motivates Gibbs sampling (one MCMC method):

o) (0, |60, y), 6D (6, | 68, y).

Rejection Sampling 27 /30

When we have two parameters: full conditionals

Suppose § = (61, 62) and we cannot sample from (601,62 | y) directly, but we can work with the full

conditionals:
(01 | 02,), (02 | 01, 9).

This motivates Gibbs sampling (one MCMC method):
05 w021 61y). 0T (61|65).

We are not optimising; we are generating a dependent sequence of samples whose long-run behaviour
matches the target posterior.

Rejection Sampling 27 /30

MCMC in pictures (random walk around the posterior)

0 Goal:

4 spend time
proportional
to density

)
start
> 01

28 /30

Rejection Sampling

MCMC in pictures (random walk around the posterior)

0 Goal:

4 spend time
proportional
to density

)
start
> 01

Heuristic: if 90% of posterior mass lies in some region, then about 90% of samples should lie there.

28 /30

Rejection Sampling

Markov property (why it matters)

In MCMC, the next state depends only on the current state:

POUHD € B|6®, 00) = B*) € B|oW).

Rejection Sampling 29/30

Markov property (why it matters)

In MCMC, the next state depends only on the current state:
PO+ € B|oW, 04D) =RO"Y € B|oW).

This is the Markov property. It brings:
@ transition kernels / transition matrices (in discrete state spaces),
@ stationary distributions,
@ convergence theorems (under conditions),

@ diagnostic questions: burn-in, mixing, autocorrelation, effective sample size, ...

Rejection Sampling 29/30

Markov property (why it matters)

In MCMC, the next state depends only on the current state:
PO+ € B|oW, 04D) =RO"Y € B|oW).

This is the Markov property. It brings:
@ transition kernels / transition matrices (in discrete state spaces),
@ stationary distributions,
@ convergence theorems (under conditions),
@ diagnostic questions: burn-in, mixing, autocorrelation, effective sample size, ...

That is the mathematical backbone of Chapter 5.

Rejection Sampling 29/30

This Friday and next week

@ More worked examples from Chapter 4 (inverse transform + rejection sampling), and some
remaining topics (Zigguart sampling, ABC).

@ After reading week: start Chapter 5 Markov chain Monte Carlo:

o Gibbs sampling (full-conditionals)
o Metropolis—Hastings (accept/reject within a Markov chain)
o why it works (stationarity, detailed balance, irreducibility/aperiodicity)

Rejection Sampling 30/30

	Recap: inverse transform sampling method
	Rejection (Envelope) Sampling
	Example: Rejection sampling
	Efficiency of rejection sampling
	Motivation for Chapter 5 (MCMC)
	Closing + reminders

