

Mid-term revision by examples: Bayesian Updating, Predictive Distributions, Transformations

Remaining questions in problem sheet + worked solutions

Warm-up problem-sheet 2 Q3: True / False (set-up)

For each statement, decide if it is **True** or **False**.

- (a) The likelihood function is proportional to the posterior distribution.
- (b) A 99% credible interval captures 99% of the posterior probability.
- (c) If a set of random variables are exchangeable, then we can reorder them without changing their joint distribution.
- (d) Bayesian and frequentist methods always lead to significantly different estimates.

Q3(a): Question

Statement (a)

(a) The likelihood function is proportional to the posterior distribution.

Decide: **True** or **False**?

Q3(a): Answer

Answer

False.

Explanation

Posterior \propto likelihood \times prior:

$$\pi(\theta | y) \propto \pi(y | \theta) \pi(\theta).$$

So the likelihood alone is not proportional to the posterior unless the prior is constant (with care about support/properness).

Q3(b): Question

Statement (b)

(b) A 99% credible interval captures 99% of the posterior probability.

Decide: **True** or **False**?

Q3(b): Answer

Answer

True.

Explanation

By definition, a 99% credible interval C is constructed so that

$$\Pr(\theta \in C \mid y) = 0.99.$$

Q3(c): Question

Statement (c)

(c) If a set of random variables are exchangeable, then we can reorder them without changing their joint distribution.

Decide: **True** or **False**?

Q3(c): Answer

Answer

True.

Explanation

Exchangeability means the joint distribution is invariant under permutations of indices:

$$\pi(y_1, \dots, y_N) = \pi(y_{\sigma(1)}, \dots, y_{\sigma(N)}) \quad \text{for any permutation } \sigma.$$

Q3(d): Question

Statement (d)

(d) Bayesian and frequentist methods always lead to significantly different estimates.

Decide: **True** or **False**?

Q3(d): Answer

Answer

False.

Explanation

With large samples or vague priors (e.g. $\pi(\theta) \propto 1$ over the relevant region), Bayesian and frequentist conclusions often coincide (Bernstein–von Mises intuition).

Q3: Summary

Statement	True/False
(a) Likelihood \propto posterior	False
(b) 99% credible interval has 99% posterior mass	True
(c) Exchangeable \Rightarrow permutation invariance	True
(d) Bayes vs frequentist always very different	False

Q4: Statement of the problem

Given

Pareto with scale $\alpha = 1$ and shape β :

$$\pi(x | \alpha = 1, \beta) = \frac{\beta}{x^{\beta+1}}, \quad x > 1, \beta > 0.$$

Data $y = \{y_1, \dots, y_N\}$ are i.i.d. from this model.

Prior:

$$\pi(\beta) \propto \beta^{a-1} e^{-b\beta}.$$

Task

Derive the posterior $\pi(\beta | y)$ and identify its distribution.

Q4: Likelihood (show the exact simplification)

Start from the i.i.d. product

$$\pi(y | \beta, \alpha = 1)$$

Q4: Likelihood (show the exact simplification)

Start from the i.i.d. product

$$\pi(y \mid \beta, \alpha = 1) = \prod_{i=1}^N \frac{\beta}{y_i^{\beta+1}}$$

Q4: Likelihood (show the exact simplification)

Start from the i.i.d. product

$$\pi(y \mid \beta, \alpha = 1) = \prod_{i=1}^N \frac{\beta}{y_i^{\beta+1}} = \frac{\beta^N}{\prod_{i=1}^N y_i^{\beta+1}}.$$

Separate the β -dependent and constant parts

Write

$$\prod_{i=1}^N y_i^{\beta+1}$$

Q4: Likelihood (show the exact simplification)

Start from the i.i.d. product

$$\pi(y \mid \beta, \alpha = 1) = \prod_{i=1}^N \frac{\beta}{y_i^{\beta+1}} = \frac{\beta^N}{\prod_{i=1}^N y_i^{\beta+1}}.$$

Separate the β -dependent and constant parts

Write

$$\prod_{i=1}^N y_i^{\beta+1} = \left(\prod_{i=1}^N y_i \right) \left(\prod_{i=1}^N y_i^\beta \right).$$

Q4: Likelihood (show the exact simplification)

Start from the i.i.d. product

$$\pi(y \mid \beta, \alpha = 1) = \prod_{i=1}^N \frac{\beta}{y_i^{\beta+1}} = \frac{\beta^N}{\prod_{i=1}^N y_i^{\beta+1}}.$$

Separate the β -dependent and constant parts

Write

$$\prod_{i=1}^N y_i^{\beta+1} = \left(\prod_{i=1}^N y_i \right) \left(\prod_{i=1}^N y_i^\beta \right).$$

So

$$\pi(y \mid \beta, \alpha = 1) = \frac{\beta^N}{\left(\prod_{i=1}^N y_i \right) \left(\prod_{i=1}^N y_i^\beta \right)}$$

Q4: Likelihood (show the exact simplification)

Start from the i.i.d. product

$$\pi(y \mid \beta, \alpha = 1) = \prod_{i=1}^N \frac{\beta}{y_i^{\beta+1}} = \frac{\beta^N}{\prod_{i=1}^N y_i^{\beta+1}}.$$

Separate the β -dependent and constant parts

Write

$$\prod_{i=1}^N y_i^{\beta+1} = \left(\prod_{i=1}^N y_i \right) \left(\prod_{i=1}^N y_i^\beta \right).$$

So

$$\pi(y \mid \beta, \alpha = 1) = \frac{\beta^N}{\left(\prod_{i=1}^N y_i \right) \left(\prod_{i=1}^N y_i^\beta \right)} \propto \frac{\beta^N}{\prod_{i=1}^N y_i^\beta}$$

because $\prod_{i=1}^N y_i$ does not depend on β .

Q4: Convert the product into an exponential using logs

From the previous slide:

$$\pi(y | \beta) \propto \beta^N \left(\prod_{i=1}^N y_i^{-\beta} \right).$$

Q4: Convert the product into an exponential using logs

From the previous slide:

$$\pi(y | \beta) \propto \beta^N \left(\prod_{i=1}^N y_i^{-\beta} \right).$$

Now simplify the product term:

$$\prod_{i=1}^N y_i^{-\beta}$$

Q4: Convert the product into an exponential using logs

From the previous slide:

$$\pi(y | \beta) \propto \beta^N \left(\prod_{i=1}^N y_i^{-\beta} \right).$$

Now simplify the product term:

$$\prod_{i=1}^N y_i^{-\beta} = \exp \left(\log \prod_{i=1}^N y_i^{-\beta} \right)$$

Q4: Convert the product into an exponential using logs

From the previous slide:

$$\pi(y | \beta) \propto \beta^N \left(\prod_{i=1}^N y_i^{-\beta} \right).$$

Now simplify the product term:

$$\prod_{i=1}^N y_i^{-\beta} = \exp \left(\log \prod_{i=1}^N y_i^{-\beta} \right) = \exp \left(\sum_{i=1}^N \log(y_i^{-\beta}) \right).$$

Q4: Convert the product into an exponential using logs

From the previous slide:

$$\pi(y | \beta) \propto \beta^N \left(\prod_{i=1}^N y_i^{-\beta} \right).$$

Now simplify the product term:

$$\prod_{i=1}^N y_i^{-\beta} = \exp \left(\log \prod_{i=1}^N y_i^{-\beta} \right) = \exp \left(\sum_{i=1}^N \log(y_i^{-\beta}) \right).$$

Use $\log(y_i^{-\beta}) = -\beta \log y_i$:

$$\prod_{i=1}^N y_i^{-\beta} = \exp \left(-\beta \sum_{i=1}^N \log y_i \right).$$

Q4: Convert the product into an exponential using logs

From the previous slide:

$$\pi(y | \beta) \propto \beta^N \left(\prod_{i=1}^N y_i^{-\beta} \right).$$

Now simplify the product term:

$$\prod_{i=1}^N y_i^{-\beta} = \exp \left(\log \prod_{i=1}^N y_i^{-\beta} \right) = \exp \left(\sum_{i=1}^N \log(y_i^{-\beta}) \right).$$

Use $\log(y_i^{-\beta}) = -\beta \log y_i$:

$$\prod_{i=1}^N y_i^{-\beta} = \exp \left(-\beta \sum_{i=1}^N \log y_i \right).$$

Likelihood kernel in β

$$\pi(y | \beta) \propto \beta^N \exp \left(-\beta \sum_{i=1}^N \log y_i \right).$$

Q4: Posterior and identification as Gamma

Multiply likelihood and prior kernels:

$$\pi(\beta \mid y) \propto \pi(y \mid \beta) \pi(\beta) \propto \left[\beta^N e^{-\beta \sum \log y_i} \right] \left[\beta^{a-1} e^{-b\beta} \right].$$

Q4: Posterior and identification as Gamma

Multiply likelihood and prior kernels:

$$\pi(\beta | y) \propto \pi(y | \beta) \pi(\beta) \propto \left[\beta^N e^{-\beta \sum \log y_i} \right] \left[\beta^{a-1} e^{-b\beta} \right].$$

Combine terms:

$$\pi(\beta | y) \propto \beta^{N+a-1} \exp \left(-\beta \left(b + \sum_{i=1}^N \log y_i \right) \right).$$

Q4: Posterior and identification as Gamma

Multiply likelihood and prior kernels:

$$\pi(\beta | y) \propto \pi(y | \beta) \pi(\beta) \propto \left[\beta^N e^{-\beta \sum \log y_i} \right] \left[\beta^{a-1} e^{-b\beta} \right].$$

Combine terms:

$$\pi(\beta | y) \propto \beta^{N+a-1} \exp\left(-\beta \left(b + \sum_{i=1}^N \log y_i\right)\right).$$

Posterior

This is Gamma-shaped, so

$$\beta | y \sim \left(N + a, b + \sum_{i=1}^N \log y_i \right).$$

Q4: Posterior and identification as Gamma

Multiply likelihood and prior kernels:

$$\pi(\beta | y) \propto \pi(y | \beta) \pi(\beta) \propto \left[\beta^N e^{-\beta \sum \log y_i} \right] \left[\beta^{a-1} e^{-b\beta} \right].$$

Combine terms:

$$\pi(\beta | y) \propto \beta^{N+a-1} \exp\left(-\beta \left(b + \sum_{i=1}^N \log y_i\right)\right).$$

Posterior

This is Gamma-shaped, so

$$\beta | y \sim \left(N + a, b + \sum_{i=1}^N \log y_i \right).$$

Key statistic

The data influence the posterior through the sufficient statistic $\sum_{i=1}^N \log y_i$ (given $\alpha = 1$).

Problem sheet 3 Q2: Poisson model + Gamma prior

Model: $Y_1, \dots, Y_N \mid \lambda \stackrel{i.i.d.}{\sim} \text{Pois}(\lambda)$.

- (a) Prior $\lambda \sim \text{Gamma}(\alpha, \beta)$. Derive posterior.
- (b) Fix $\alpha = 1$. Discuss effect of β on posterior.
- (c) Derive posterior predictive for a new observation \tilde{y} .

Hint (given): Negative Binomial pmf with parameters r, p :

$$\pi(k \mid r, p) = \frac{\Gamma(k+r)}{\Gamma(r) k!} (1-p)^k p^r, \quad k \in \{0, 1, 2, \dots\}.$$

Q2(a) Posterior derivation

Likelihood kernel:

$$\pi(y \mid \lambda) = \prod_{i=1}^N \frac{\lambda^{y_i} e^{-\lambda}}{y_i!} \propto \lambda^{\sum_{i=1}^N y_i} e^{-N\lambda}.$$

Q2(a) Posterior derivation

Likelihood kernel:

$$\pi(y \mid \lambda) = \prod_{i=1}^N \frac{\lambda^{y_i} e^{-\lambda}}{y_i!} \propto \lambda^{\sum_{i=1}^N y_i} e^{-N\lambda}.$$

Gamma prior (rate parameterization):

$$\pi(\lambda) = \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta\lambda} \propto \lambda^{\alpha-1} e^{-\beta\lambda}.$$

Q2(a) Posterior derivation

Likelihood kernel:

$$\pi(y \mid \lambda) = \prod_{i=1}^N \frac{\lambda^{y_i} e^{-\lambda}}{y_i!} \propto \lambda^{\sum_{i=1}^N y_i} e^{-N\lambda}.$$

Gamma prior (rate parameterization):

$$\pi(\lambda) = \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta\lambda} \propto \lambda^{\alpha-1} e^{-\beta\lambda}.$$

Posterior kernel:

$$\pi(\lambda \mid y) \propto \lambda^{\sum y_i + \alpha - 1} e^{-(N + \beta)\lambda}.$$

Q2(a) Posterior derivation

Likelihood kernel:

$$\pi(y \mid \lambda) = \prod_{i=1}^N \frac{\lambda^{y_i} e^{-\lambda}}{y_i!} \propto \lambda^{\sum_{i=1}^N y_i} e^{-N\lambda}.$$

Gamma prior (rate parameterization):

$$\pi(\lambda) = \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta\lambda} \propto \lambda^{\alpha-1} e^{-\beta\lambda}.$$

Posterior kernel:

$$\pi(\lambda \mid y) \propto \lambda^{\sum y_i + \alpha - 1} e^{-(N + \beta)\lambda}.$$

Therefore

$$\lambda \mid y \sim \text{Gamma}\left(\alpha + \sum_{i=1}^N y_i, \beta + N\right).$$

Q2(b) Effect of β when $\alpha = 1$

With $\alpha = 1$,

$$\lambda | y \sim \text{Gamma}\left(1 + \sum_{i=1}^N y_i, \beta + N\right).$$

Q2(b) Effect of β when $\alpha = 1$

With $\alpha = 1$,

$$\lambda \mid y \sim \text{Gamma}\left(1 + \sum_{i=1}^N y_i, \beta + N\right).$$

For $\text{Gamma}(a, b)$ (shape a , rate b):

$$\mathbb{E}[\lambda \mid y] = \frac{1 + \sum y_i}{\beta + N}, \quad \text{Var}(\lambda \mid y) = \frac{1 + \sum y_i}{(\beta + N)^2}.$$

Q2(b) Effect of β when $\alpha = 1$

With $\alpha = 1$,

$$\lambda \mid y \sim \text{Gamma}\left(1 + \sum_{i=1}^N y_i, \beta + N\right).$$

For $\text{Gamma}(a, b)$ (shape a , rate b):

$$\mathbb{E}[\lambda \mid y] = \frac{1 + \sum y_i}{\beta + N}, \quad \text{Var}(\lambda \mid y) = \frac{1 + \sum y_i}{(\beta + N)^2}.$$

Interpretation:

- Larger β (stronger prior pull toward smaller λ) \Rightarrow smaller posterior mean and variance.
- Smaller β \Rightarrow weaker prior (data dominates more), larger mean/variance.

Q2(c) Posterior predictive $\pi(\tilde{y} | y)$

$$\pi(\tilde{y} | y) = \int \pi(\tilde{y} | \lambda) \pi(\lambda | y) d\lambda, \quad \pi(\tilde{y} | \lambda) = \frac{\lambda^{\tilde{y}} e^{-\lambda}}{\tilde{y}!}.$$

Q2(c) Posterior predictive $\pi(\tilde{y} | y)$

$$\pi(\tilde{y} | y) = \int \pi(\tilde{y} | \lambda) \pi(\lambda | y) d\lambda, \quad \pi(\tilde{y} | \lambda) = \frac{\lambda^{\tilde{y}} e^{-\lambda}}{\tilde{y}!}.$$

Plug in posterior $\lambda | y \sim \text{Gamma}(\alpha + \sum y_i, \beta + N)$ and integrate:

$$\pi(\tilde{y} | y) = \frac{\Gamma(\tilde{y} + \alpha + \sum y_i)}{\tilde{y}! \Gamma(\alpha + \sum y_i)} \left(\frac{\beta + N}{\beta + N + 1} \right)^{\alpha + \sum y_i} \left(\frac{1}{\beta + N + 1} \right)^{\tilde{y}}.$$

Q2(c) Posterior predictive $\pi(\tilde{y} | y)$

$$\pi(\tilde{y} | y) = \int \pi(\tilde{y} | \lambda) \pi(\lambda | y) d\lambda, \quad \pi(\tilde{y} | \lambda) = \frac{\lambda^{\tilde{y}} e^{-\lambda}}{\tilde{y}!}.$$

Plug in posterior $\lambda | y \sim \text{Gamma}(\alpha + \sum y_i, \beta + N)$ and integrate:

$$\pi(\tilde{y} | y) = \frac{\Gamma(\tilde{y} + \alpha + \sum y_i)}{\tilde{y}! \Gamma(\alpha + \sum y_i)} \left(\frac{\beta + N}{\beta + N + 1} \right)^{\alpha + \sum y_i} \left(\frac{1}{\beta + N + 1} \right)^{\tilde{y}}.$$

This matches NegBin(r, p) with

$$r = \alpha + \sum_{i=1}^N y_i, \quad p = \frac{\beta + N}{\beta + N + 1}.$$

Q2(c) Posterior predictive $\pi(\tilde{y} | y)$

$$\pi(\tilde{y} | y) = \int \pi(\tilde{y} | \lambda) \pi(\lambda | y) d\lambda, \quad \pi(\tilde{y} | \lambda) = \frac{\lambda^{\tilde{y}} e^{-\lambda}}{\tilde{y}!}.$$

Plug in posterior $\lambda | y \sim \text{Gamma}(\alpha + \sum y_i, \beta + N)$ and integrate:

$$\pi(\tilde{y} | y) = \frac{\Gamma(\tilde{y} + \alpha + \sum y_i)}{\tilde{y}! \Gamma(\alpha + \sum y_i)} \left(\frac{\beta + N}{\beta + N + 1} \right)^{\alpha + \sum y_i} \left(\frac{1}{\beta + N + 1} \right)^{\tilde{y}}.$$

This matches NegBin(r, p) with

$$r = \alpha + \sum_{i=1}^N y_i, \quad p = \frac{\beta + N}{\beta + N + 1}.$$

Takeaway: Poisson likelihood + Gamma posterior \Rightarrow Negative Binomial posterior predictive.

Negative Binomial distribution $\text{NegBin}(r, p)$: quick intro

Interpretation (one common parametrisation)

Run i.i.d. Bernoulli trials with success probability p . Stop when you have observed r successes. Let K be the **number of failures before the r -th success**. Then $K \sim \text{NegBin}(r, p)$, with support $K \in \{0, 1, 2, \dots\}$.

PMF (matches the hint used in our question)

$$\Pr(K = k) = \binom{k+r-1}{k} (1-p)^k p^r = \frac{\Gamma(k+r)}{\Gamma(r) k!} (1-p)^k p^r, \quad k = 0, 1, 2, \dots$$

Mean / variance (for this parametrisation)

$$\mathbb{E}[K] = \frac{r(1-p)}{p}, \quad \text{Var}(K) = \frac{r(1-p)}{p^2}.$$

(Variance is larger than the mean unless $p = 1$, hence “overdispersed Poisson” behaviour.)

Why it appeared in our sheet

If $\tilde{Y} | \lambda \sim \text{Pois}(\lambda)$ and $\lambda | y \sim \text{Gamma}(a, b)$, then integrating out λ gives
 $\tilde{Y} | y \sim \text{NegBin}\left(r = a, p = \frac{b}{b+1}\right)$ under the same $\text{NegBin}(r, p)$ convention. :

Q3: Density of a transformed variable

Let $X \sim \pi(x)$ be continuous and $Y = h(X)$ where h is strictly monotonic and smooth.

Show:

$$\pi_Y(y) = \pi_X(x) \left| \frac{\partial x}{\partial y} \right|.$$

Then: if $X \sim \text{Exp}(1)$, find the density of $Y = \sqrt{X}$.

Q3 Solution: general change of variables

If h is strictly increasing:

$$F_Y(y) = \Pr(Y \leq y) = \Pr(h(X) \leq y) = \Pr(X \leq h^{-1}(y)) = F_X(h^{-1}(y)).$$

Q3 Solution: general change of variables

If h is strictly increasing:

$$F_Y(y) = \Pr(Y \leq y) = \Pr(h(X) \leq y) = \Pr(X \leq h^{-1}(y)) = F_X(h^{-1}(y)).$$

Differentiate w.r.t. y :

$$\pi_Y(y) = \frac{d}{dy} F_X(h^{-1}(y)) = \pi_X(h^{-1}(y))h^{-1}(y)y.$$

Q3 Solution: general change of variables

If h is strictly increasing:

$$F_Y(y) = \Pr(Y \leq y) = \Pr(h(X) \leq y) = \Pr(X \leq h^{-1}(y)) = F_X(h^{-1}(y)).$$

Differentiate w.r.t. y :

$$\pi_Y(y) = \frac{d}{dy} F_X(h^{-1}(y)) = \pi_X(h^{-1}(y)) h^{-1}(y) y.$$

If h is decreasing, a minus sign appears; both cases combine to

$$\pi_Y(y) = \pi_X(x) \left| \frac{dx}{dy} \right|.$$

Q3 Solution: $X \sim \text{Exp}(1)$, $Y = \sqrt{X}$

Here $\pi_X(x) = e^{-x}$ for $x > 0$. Let $Y = \sqrt{X} \Rightarrow X = Y^2$ with $y > 0$.

Q3 Solution: $X \sim \text{Exp}(1)$, $Y = \sqrt{X}$

Here $\pi_X(x) = e^{-x}$ for $x > 0$. Let $Y = \sqrt{X} \Rightarrow X = Y^2$ with $y > 0$.

Compute Jacobian:

$$\frac{dx}{dy} = \frac{d}{dy} = 2y.$$

Q3 Solution: $X \sim \text{Exp}(1)$, $Y = \sqrt{X}$

Here $\pi_X(x) = e^{-x}$ for $x > 0$. Let $Y = \sqrt{X} \Rightarrow X = Y^2$ with $y > 0$.

Compute Jacobian:

$$\frac{dx}{dy} = \frac{d}{dy} = 2y.$$

Therefore

$$\pi_Y(y) = \pi_X(y^2) \left| \frac{dx}{dy} \right| = e^{-y^2} \cdot 2y, \quad y > 0.$$

Q3 Solution: $X \sim \text{Exp}(1)$, $Y = \sqrt{X}$

Here $\pi_X(x) = e^{-x}$ for $x > 0$. Let $Y = \sqrt{X} \Rightarrow X = Y^2$ with $y > 0$.

Compute Jacobian:

$$\frac{dx}{dy} = \frac{d}{dy} = 2y.$$

Therefore

$$\pi_Y(y) = \pi_X(y^2) \left| \frac{dx}{dy} \right| = e^{-y^2} \cdot 2y, \quad y > 0.$$

Check: looks like a Rayleigh-type shape; integrates to 1 on $(0, \infty)$.

Q4: Exponential model + invariant prior

Let $X_1, \dots, X_n \mid \lambda \stackrel{i.i.d.}{\sim} \text{Exp}(\lambda)$ with density

$$\pi(x \mid \lambda) = \lambda e^{-\lambda x}, \quad x > 0.$$

- (a) Construct an invariant (Jeffreys) prior for λ .
- (b) Derive posterior using this prior.
- (c) What do you notice about this prior?

Q4(a) Jeffreys prior via Fisher information

Single-observation log-likelihood:

$$\log \pi(X | \lambda) = \log \lambda - \lambda X.$$

Q4(a) Jeffreys prior via Fisher information

Single-observation log-likelihood:

$$\log \pi(X | \lambda) = \log \lambda - \lambda X.$$

Derivatives:

$$\frac{\partial}{\partial \lambda} \log \pi(X | \lambda) = \frac{1}{\lambda} - X, \quad \frac{\partial^2}{\partial \lambda^2} \log \pi(X | \lambda) = -\frac{1}{\lambda^2}.$$

Q4(a) Jeffreys prior via Fisher information

Single-observation log-likelihood:

$$\log \pi(X | \lambda) = \log \lambda - \lambda X.$$

Derivatives:

$$\frac{\partial}{\partial \lambda} \log \pi(X | \lambda) = \frac{1}{\lambda} - X, \quad \frac{\partial^2}{\partial \lambda^2} \log \pi(X | \lambda) = -\frac{1}{\lambda^2}.$$

Fisher information:

$$I(\lambda) = \mathbb{E}\left[-\frac{\partial^2}{\partial \lambda^2} \log \pi(X | \lambda)\right] = \frac{1}{\lambda^2}.$$

Q4(a) Jeffreys prior via Fisher information

Single-observation log-likelihood:

$$\log \pi(X | \lambda) = \log \lambda - \lambda X.$$

Derivatives:

$$\frac{\partial}{\partial \lambda} \log \pi(X | \lambda) = \frac{1}{\lambda} - X, \quad \frac{\partial^2}{\partial \lambda^2} \log \pi(X | \lambda) = -\frac{1}{\lambda^2}.$$

Fisher information:

$$I(\lambda) = \mathbb{E}\left[-\frac{\partial^2}{\partial \lambda^2} \log \pi(X | \lambda)\right] = \frac{1}{\lambda^2}.$$

Jeffreys prior:

$$\pi(\lambda) \propto \sqrt{I(\lambda)} = \frac{1}{\lambda}, \quad \lambda > 0.$$

Q4(b) Posterior with Jeffreys prior

Likelihood for n i.i.d. observations:

$$\pi(x | \lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i} = \lambda^n \exp\left(-\lambda \sum_{i=1}^n x_i\right).$$

Q4(b) Posterior with Jeffreys prior

Likelihood for n i.i.d. observations:

$$\pi(x | \lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i} = \lambda^n \exp\left(-\lambda \sum_{i=1}^n x_i\right).$$

Multiply by prior $\pi(\lambda) \propto 1/\lambda$:

$$\pi(\lambda | x) \propto \lambda^{n-1} \exp\left(-\lambda \sum_{i=1}^n x_i\right).$$

Q4(b) Posterior with Jeffreys prior

Likelihood for n i.i.d. observations:

$$\pi(x | \lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i} = \lambda^n \exp\left(-\lambda \sum_{i=1}^n x_i\right).$$

Multiply by prior $\pi(\lambda) \propto 1/\lambda$:

$$\pi(\lambda | x) \propto \lambda^{n-1} \exp\left(-\lambda \sum_{i=1}^n x_i\right).$$

Identify Gamma kernel:

$$\lambda | x \sim \text{Gamma}\left(n, \sum_{i=1}^n x_i\right),$$

(shape n , rate $\sum x_i$).

Q4(c) What do you notice about the prior?

Consider the integral over $(0, \infty)$:

$$\int_0^\infty \frac{1}{\lambda} d\lambda = \infty.$$

Q4(c) What do you notice about the prior?

Consider the integral over $(0, \infty)$:

$$\int_0^\infty \frac{1}{\lambda} d\lambda = \infty.$$

So the Jeffreys prior $\pi(\lambda) \propto 1/\lambda$ is improper.

Q4(c) What do you notice about the prior?

Consider the integral over $(0, \infty)$:

$$\int_0^\infty \frac{1}{\lambda} d\lambda = \infty.$$

So the Jeffreys prior $\pi(\lambda) \propto 1/\lambda$ is improper.

But: the posterior $\text{Gamma}(n, \sum x_i)$ is a proper distribution for $n \geq 1$. So it is still usable (common in objective Bayes).

- **Conjugacy:** Beta–Binomial and Gamma–Poisson give posteriors in same family.
- **Sequential = batch:** updating doesn't depend on when data arrives.
- **Posterior predictive:** integrate out parameter; Gamma–Poisson \Rightarrow Negative Binomial.
- **Transforms:** $\pi_Y(y) = \pi_X(x) \left| \frac{dx}{dy} \right|$.
- **Jeffreys prior:** $\pi(\lambda) \propto \sqrt{I(\lambda)}$ can be improper but yield proper posterior.