Mid-term revision by examples: Bayesian Updating, Predictive

Distributions, Transformations

Remaining questions in problem sheet + worked solutions

Mid-term revision by examples: Bayesian Updating, Pred



Warm-up problem-sheet 2 Q3: True / False (set-up)

For each statement, decide if it is True or False.

(a) The likelihood function is proportional to the posterior distribution.
(b) A 99% credible interval captures 99% of the posterior probability.

(c) If a set of random variables are exchangeable, then we can reorder them without changing their
joint distribution.

(d) Bayesian and frequentist methods always lead to significantly different estimates.
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Q3(a): Question

Statement (a)

(a) The likelihood function is proportional to the posterior distribution.

Decide: True or False?
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Q3(a): Answer

False.

Explanation

Posterior o likelihood X prior:

(0] y) o< w(y [ 0) w(0).
So the likelihood alone is not proportional to the posterior unless the prior is constant (with care about
support/properness).
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): Question

Statement (b)
(b) A 99% credible interval captures 99% of the posterior probability.

Decide: True or False?
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Q3(b): Answer

True. I

Explanation

By definition, a 99% credible interval C is constructed so that

Pr(6 € C|y) = 0.99.
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(c) If a set of random variables are exchangeable, then we can reorder them without changing their
joint distribution.

Decide: True or False?
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Q3(c): Answer

True. I

Explanation

Exchangeability means the joint distribution is invariant under permutations of indices:

(Y15 Yn) = T(Yoq), - - -5 Yo(ny)  for any permutation o.
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): Question

Statement (d)

(d) Bayesian and frequentist methods always lead to significantly different estimates.

Decide: True or False?
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Q3(d): Answer

False. I

Explanation

With large samples or vague priors (e.g. m(0) o 1 over the relevant region), Bayesian and frequentist
conclusions often coincide (Bernstein—von Mises intuition).
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Statement True/False
(a) Likelihood o posterior False
(b) 99% credible interval has 99% posterior mass  True
(c) Exchangeable = permutation invariance True
(d) Bayes vs frequentist always very different False
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Q4: Statement of the problem

Pareto with scale @ = 1 and shape §:

B

W(x\azl,ﬁ):m’

x>1 5>0.

Data y = {y1,...,yn} are i.i.d. from this model.
Prior:

7(B) B2 le b8,

Derive the posterior m(3 | y) and identify its distribution.
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Q4: Likelihood (show the exact simplification)

Start from the i.i.d. product

m(y | B,a=1)
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Q4: Likelihood (show the exact simplification)

Start from the i.i.d. product

T8
| Ba=1)=]] 5

i=17i
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Q4: Likelihood (show the exact simplification)

Start from the i.i.d. product

il
y|Ba=1 = :
7r( a = ) ’1_[1 B+1 H, 1yl,B+1

Separate the [3-dependent and constant parts
Write

Hyﬁﬂ

v

oyt
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Q4: Likelihood (show the exact simplification)

Start from the i.i.d. product

N
B g
77()/|576V:1):i1;[1yiﬁ+1:1—[m B+1"

i=17i

Separate the [3-dependent and constant parts

Write
N N N
[[y - (m) (Hyf) |
=1 =1 =1

- = = — oyt
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Q4: Likelihood (show the exact simplification)

Start from the i.i.d. product

N
B g
77()/|576V:1):i1;[1yiﬁ+1:1—[m B+1"

i=17i

Separate the [3-dependent and constant parts

Write
N N N
[[y - (m) (Hyf) |
=1 =1

i=1

ﬁN
M) (T ?)

W(Y|ﬁ7a:1):<

- = = — oyt
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Q4: Likelihood (show the exact simplification)

Start from the i.i.d. product

N
B g
77()/|576V:1):i1;[1yiﬁ+1:1—[m B+1"

i=17i

Separate the [3-dependent and constant parts
Write

i i) )

i=1

gN N 5” i
vazlyf) (vazly,-ﬁ ) ITiZyi

W(Y|ﬁ7a:1):<

because [, y; does not depend on 3.

- = = — oyt
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Q4: Convert the product into an exponential using logs

From the previous slide:

N
w(y | B) o BN (H y,-‘ﬂ> :

i=1
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Q4: Convert the product into an exponential using logs

From the previous slide:

N
w(y | 8) o< B (H y,‘f*) .

i=1
Now simplify the product term:

N
H Yiiﬁ
i=1
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Q4: Convert the product into an exponential using logs

From the previous slide:

N
w(y | 8) o< B (H y,‘f*) .

i=1
Now simplify the product term:

N N
Hylfﬂ = exp (Iog Hyi5>
i=1 i=1
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Q4: Convert the product into an exponential using logs

From the previous slide:

N
w(y | 8) o< B (H y,‘f*) .

i=1
Now simplify the product term:

N N N
Hyfﬂ = exp (Iog Hyi5> = exp (Z log (yiﬁ>> .
i=1 i=1 i=1
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Q4: Convert the product into an exponential using logs

From the previous slide:

N
w(y | 8) o< B (H y,‘f*) .

i=1
Now simplify the product term:

N N N
Hyfﬂ = exp (Iog Hyi5> = exp (Z log (yiﬁ>> .
i=1 i=1 i=1

Use Iog(y,-_ﬁ) = —Qlogy;:

N N
" = exp (ﬁz |ogy,-) |
i=1 i=1
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Q4: Convert the product into an exponential using logs

From the previous slide:

N
w(y | 8) o< B (H y,‘f*) .

i=1
Now simplify the product term:

N N N
Hyfﬂ = exp (Iog Hyiﬁ> = exp <Z log (y,.5>> .
i=1 i=1 i=1

Use Iog(y,-_ﬁ) = —Qlogy;:

N N
" = exp (ﬁz |ogy,-) |
i=1 i=1

Likelihood kernel in 3

N
m(y | B) ox B" exp (—ﬁz |ogy;> .
i=1

Mid-term revision by examples: Bayesian Updating, Pred



Q4: Posterior and identification as Gamma

Multiply likelihood and prior kernels:
(B |y) xw(y | B)m(B) x [5Ne—ﬁzlogy,} [Ba—le—bﬁ] .
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Q4: Posterior and identification as Gamma

Multiply likelihood and prior kernels:
(B |y) xw(y | B)m(B) x [5Ne—ﬁ2|0gy,} [Ba—le—bﬁ] .

Combine terms:

N
m(B]y) oc BV exp (—ﬂ <b +Y log y;>> :
i=1
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Q4: Posterior and identification as Gamma

Multiply likelihood and prior kernels:
(B |y) xw(y | B)m(B) x [5Ne—ﬂ2|ogyf] [Ba—le—bﬁ] .

Combine terms:

N
m(B]y) oc BV exp (—ﬂ (b +Y log y;>> :
i=1

Posterior
This is Gamma-shaped, so

N

i=1
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Q4: Posterior and identification as Gamma

Multiply likelihood and prior kernels:
(B |y) xw(y | B)m(B) x [5Ne—ﬂ2|ogyf] [Ba—le—bﬁ] .

Combine terms:

N
m(B]y) oc BV exp (—ﬂ (b +Y log y;>> :
i=1

Posterior
This is Gamma-shaped, so

N

i=1

The data influence the posterior through the sufficient statistic E,N:l log y; (given o = 1).

= md = et
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Problem sheet 3 Q2: Poisson model + Gamma prior

Model: Yi,..., Yy | A"~ Pois()).

(a) Prior A ~ Gamma(c, 3). Derive posterior.
(b) Fix aw = 1. Discuss effect of 8 on posterior.

(c) Derive posterior predictive for a new observation ¥.

Hint (given): Negative Binomial pmf with parameters r, p:

(k| r,p)= W(l —p)kp", ke{0,1,2,...}.
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Q2(a) Posterior derivation

Likelihood kernel: M

Wie=A
m(y | A) = H ;I ox AT g NA,
i=1

i+
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Q2(a) Posterior derivation

Likelihood kernel: M

Wie=A
m(y | A) = H ;I ox AT g NA,
i=1

;!
Gamma prior (rate parameterization):

ﬂa
7(\) = Z—X\2"le™ P o \oTleAA

M(a)
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Q2(a) Posterior derivation

Likelihood kernel: M
Nie=> N
m(y | A) = o AZim Vi g=NA,
v In=T175

Gamma prior (rate parameterization):

ﬂa

"=y

)\a—le—,@k o )\a—le—ﬁk-

Posterior kernel:
(A | y) oc AXZYitaTl o= (NFAA
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Q2(a) Posterior derivation

Likelihood kernel: M

Wie=A
m(y | A) = H ;I ox AT g NA,
i=1

;!
Gamma prior (rate parameterization):

ﬂa
7(\) = Z—X\2"le™ P o \oTleAA

M(a)

Posterior kernel:
(A | y) oc AXZYitaTl o= (NFAA

Therefore

)\|y~Gamma(a+§N:y,', B+N).

i=1
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Q2(b) Effect of 5 when av =1

With a =1,
N
/\|y~Gamma(1—|—Zy,-, 6+N>.

i=1
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Q2(b) Effect of 5 when av =1

With o = 1,
N
A yNGamma(l—i—Zy,-, 6+N>.
i=1
For Gammay(a, b) (shape a, rate b):

1 : 1 .
B 1= L2 vaa ) - EEE
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Q2(b) Effect of 5 when av =1

With a =1,
N
/\|y~Gamma(1—|—Zy,-, 6+N).

i=1
For Gammay(a, b) (shape a, rate b):
1+> i 1+3 v
E[A = —= Var(A ===
Interpretation:

@ Larger (3 (stronger prior pull toward smaller A) = smaller posterior mean and variance.

® Smaller 8 = weaker prior (data dominates more), larger mean/variance.
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Q2(c) Posterior predictive w(y | y)

Me2

w719 = [+ INFO A w7 =
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Q2(c) Posterior predictive w(y | y)

w719 = [7G 1070 dr a] ) =22

Plug in posterior A | y ~ Gamma(a + > y;, 8+ N) and integrate:

r(y+a+zy,-)< B+N )“*Z”( 1 >?
J'a+>y) \B+N+1 B+N+1/)

myly)=
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Q2(c) Posterior predictive w(y | y)

w719 = [7G 1070 dr a] ) =22

Plug in posterior A | y ~ Gamma(a + > y;, 8+ N) and integrate:

r(y+a+zy,-)< B+N )“*Z”( 1 >?
J'a+>y) \B+N+1 B+N+1/)

This matches NegBin(r, p) with

myly)=

N
_ , _ B+N
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Q2(c) Posterior predictive w(y | y)

w719 = [7G 1070 dr a] ) =22

Plug in posterior A | y ~ Gamma(a + > y;, 8+ N) and integrate:

r(y+a+zy,-)< B+N )“*Z”( 1 >?
J'a+>y) \B+N+1 B+N+1/)

This matches NegBin(r, p) with

myly)=

N
_ , _ B+N

Takeaway: Poisson likelihood + Gamma posterior = Negative Binomial posterior predictive.
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Negative Binomial distribution NegBin(r, p): quick intro

Interpretation (one common parametrisation)

Run i.i.d. Bernoulli trials with success probability p. Stop when you have observed r successes. Let K

be the number of failures before the r-th success. Then K ~ NegBin(r, p), with support
Ke{0,1,2,...}.

PMF (matches the hint used in our question)

e e (k—l—r—l)(l_p)k , T(k+r)

N T _ k .r _
P= Ty AP k=012

Mean / variance (for this parametrisation)

r(l—p) r(l—p)
E[K] = , Var(K) =
(K] ) (K) 2
(Variance is larger than the mean unless p = 1, hence “overdispersed Poisson” behaviour.)
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Why it appeared in our sheet
If Y | A ~ Pois(\) and X | y ~ Gamma(a, b), then integrating out \ gives
Yy | y ~ NegBin(r=a, p= b—il) under the same NegBin(r, p) convention. :
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Q3: Density of a transformed variable

Let X ~ m(x) be continuous and Y = h(X) where h is strictly monotonic and smooth.

Show:
Ox

Ty (y) = mx(x) dy

Then: if X ~ Exp(1), find the density of Y = v/X.
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Q3 Solution: general change of variables

If his strictly increasing:

Fy(y) =Pr(Y <y)=Pr(h(X) < y) =Pr(X < h(y)) = Fx(h~'(y))-
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Q3 Solution: general change of variables

If his strictly increasing:
Fy(y) =Pr(Y < y) = Pr(h(X) < y) = Pr(X < h™'(y)) = Fx(h™'(v)).

Differentiate w.r.t. y:
my(y) = ——Fx(h™(y)) = mx (b~ (y)hH(y)y.
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Q3 Solution: general change of variables

If his strictly increasing:
Fy(y) =Pr(Y < y) = Pr(h(X) < y) = Pr(X < h™'(y)) = Fx(h™'(v)).

Differentiate w.r.t. y:
d

v (y) = g Fx(h7 1)) = x (B ()™ )y
If his decreasing, a minus sign appears; both cases combine to
d
mr(y) = mx(x) [ |
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Q3 Solution: X ~ Exp(1), ¥ = vX

Here mx(x) = e for x > 0. Let Y = VX = X = Y? with y > 0.
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Q3 Solution: X ~ Exp(1), ¥ = vX

Here mx(x) = e for x > 0. Let Y = VX = X = Y? with y > 0.

Con pute Jacobian:
dx — d =2
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Q3 Solution: X ~ Exp(1), ¥ = vX

Here mx(x) = e for x > 0. Let Y = VX = X = Y? with y > 0.
Compute Jacobian:

Therefore
:e_y2~2y, y > 0.

Mid-term revision by examples: Bayesian Updating, Pred



Q3 Solution: X ~ Exp(1), ¥ = vX

Here mx(x) = e for x > 0. Let Y = VX = X = Y? with y > 0.
Compute Jacobian:

Therefore
:e_y2~2y, y > 0.

Check: looks like a Rayleigh-type shape; integrates to 1 on (0, 00).
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Q4: Exponential model + invariant prior

Let X1,..., X, | A"~ Exp()\) with density

(x| A) =AXe™™, x>0.

(a) Construct an invariant (Jeffreys) prior for A.
(b) Derive posterior using this prior.

(c) What do you notice about this prior?
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ffreys prior via Fisher information

Single-observation log-likelihood:
logm(X | A) =log A — AX.
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Q4(a) Jeffreys prior via Fisher information

Single-observation log-likelihood:
logm(X | A) =log A — AX.

Derivatives: 5 5
1 1
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4(a) Jeffreys prior via Fisher information

Single-observation log-likelihood:

logm(X | A) =
Derivatives:
4 logm(X | A) = L - X
ax 8T PR
Fisher information:
82
I(AN)=E|—
( ) 6A2

log A — AX.

32
e logm(X | A) =

log m(X | A)| =
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4(a) Jeffreys prior via Fisher information

Single-observation log-likelihood:
logm(X | A) =log A — AX.

Derivatives: 5 ) o .
o logm(X | A) = X - X, e logm(X | A) = YA
Fisher information:
10) =E[-Z togr(x | 0] = .
N2 A2
Jeffreys prior:
(V) /()\)—%, A0
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Q4(b) Posterior with Jeffreys prior

Likelihood for n i.i.d. observations:

(x| A) = ﬁ)\e"\x" = \exp (—)\zn:x,) .
i=1

i=1
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Q4(b) Posterior with Jeffreys prior

Likelihood for n i.i.d. observations:

(x| A) = ﬁ)\e"\x" = \exp (—)\zn:x,) .
i=1

i=1

Multiply by prior () o< 1/A:

(A | x) o< A" exp (—AZX;) .
i=1
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Q4(b) Posterior with Jeffreys prior

Likelihood for n i.i.d. observations:
(x| A) = H)\e_’\x" = \exp (—AZX;) .
i=1 i=1

Multiply by prior () o< 1/A:
(A | x) o< A" exp (—AZX;) .
i=1

Identify Gamma kernel:

n
Al x~ Gamma(n, ZX;) ,

i=1

(shape n, rate > x;).
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Q4(c) What do you notice about the prior?

Consider the integral over (0, c0):
o
1
~ d\ = oo0.
0 A
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Q4(c) What do you notice about the prior?

Consider the integral over (0, c0):
o
1
~ d\ = oo0.
0 A

So the Jeffreys prior () ox 1/ is improper.
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Q4(c) What do you notice about the prior?

Consider the integral over (0, c0):
o
1
~ d\ = oo0.
0 A

So the Jeffreys prior () ox 1/ is improper.

But: the posterior Gamma(n, > x;) is a proper distribution for n > 1. So it is still usable (common in
objective Bayes).
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Wrap-up: patterns to remember

Conjugacy: Beta—Binomial and Gamma—Poisson give posteriors in same family.

Sequential = batch: updating doesn't depend on when data arrives.

Posterior predictive: integrate out parameter; Gamma—Poisson = Negative Binomial.

Transforms: 7wy (y) = mx(x) %

Jeffreys prior: w(\) o< 1//(A\) can be improper but yield proper posterior.
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