
Mid-term revision by examples: Bayesian Updating, Predictive
Distributions, Transformations

Remaining questions in problem sheet + worked solutions

Mid-term revision by examples: Bayesian Updating, Predictive Distributions, Transformations 1 / 29



Warm-up problem-sheet 2 Q3: True / False (set-up)

For each statement, decide if it is True or False.

(a) The likelihood function is proportional to the posterior distribution.

(b) A 99% credible interval captures 99% of the posterior probability.

(c) If a set of random variables are exchangeable, then we can reorder them without changing their
joint distribution.

(d) Bayesian and frequentist methods always lead to significantly different estimates.
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Q3(a): Question

Statement (a)

(a) The likelihood function is proportional to the posterior distribution.

Decide: True or False?
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Q3(a): Answer

Answer
False.

Explanation

Posterior ∝ likelihood × prior:
π(θ | y) ∝ π(y | θ)π(θ).

So the likelihood alone is not proportional to the posterior unless the prior is constant (with care about
support/properness).
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Q3(b): Question

Statement (b)

(b) A 99% credible interval captures 99% of the posterior probability.

Decide: True or False?
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Q3(b): Answer

Answer
True.

Explanation

By definition, a 99% credible interval C is constructed so that

Pr(θ ∈ C | y) = 0.99.
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Q3(c): Question

Statement (c)

(c) If a set of random variables are exchangeable, then we can reorder them without changing their
joint distribution.

Decide: True or False?
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Q3(c): Answer

Answer
True.

Explanation

Exchangeability means the joint distribution is invariant under permutations of indices:

π(y1, . . . , yN) = π(yσ(1), . . . , yσ(N)) for any permutation σ.
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Q3(d): Question

Statement (d)

(d) Bayesian and frequentist methods always lead to significantly different estimates.

Decide: True or False?
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Q3(d): Answer

Answer
False.

Explanation

With large samples or vague priors (e.g. π(θ) ∝ 1 over the relevant region), Bayesian and frequentist
conclusions often coincide (Bernstein–von Mises intuition).
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Q3: Summary

Statement True/False

(a) Likelihood ∝ posterior False
(b) 99% credible interval has 99% posterior mass True
(c) Exchangeable ⇒ permutation invariance True
(d) Bayes vs frequentist always very different False
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Q4: Statement of the problem

Given
Pareto with scale α = 1 and shape β:

π(x | α = 1, β) =
β

xβ+1
, x > 1, β > 0.

Data y = {y1, . . . , yN} are i.i.d. from this model.
Prior:

π(β) ∝ βa−1e−bβ .

Task

Derive the posterior π(β | y) and identify its distribution.
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Q4: Likelihood (show the exact simplification)

Start from the i.i.d. product

π(y | β, α = 1)

=
N∏
i=1

β

yβ+1
i

=
βN∏N

i=1 y
β+1
i

.

Separate the β-dependent and constant parts

Write
N∏
i=1

yβ+1
i =

(
N∏
i=1

yi

)(
N∏
i=1

yβ
i

)
.

So

π(y | β, α = 1) =
βN(∏N

i=1 yi
)(∏N

i=1 y
β
i

) ∝ βN∏N
i=1 y

β
i

because
∏N

i=1 yi does not depend on β.
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Q4: Convert the product into an exponential using logs

From the previous slide:

π(y | β) ∝ βN

(
N∏
i=1

y−β
i

)
.

Now simplify the product term:

N∏
i=1

y−β
i = exp

(
log

N∏
i=1

y−β
i

)
= exp

(
N∑
i=1

log
(
y−β
i

))
.

Use log
(
y−β
i

)
= −β log yi :

N∏
i=1

y−β
i = exp

(
−β

N∑
i=1

log yi

)
.

Likelihood kernel in β

π(y | β) ∝ βN exp

(
−β

N∑
i=1

log yi

)
.
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Q4: Posterior and identification as Gamma

Multiply likelihood and prior kernels:

π(β | y) ∝ π(y | β)π(β) ∝
[
βNe−β

∑
log yi

] [
βa−1e−bβ

]
.

Combine terms:

π(β | y) ∝ βN+a−1 exp

(
−β

(
b +

N∑
i=1

log yi

))
.

Posterior
This is Gamma-shaped, so

β | y ∼

(
N + a, b +

N∑
i=1

log yi

)
.

Key statistic

The data influence the posterior through the sufficient statistic
∑N

i=1 log yi (given α = 1).
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Problem sheet 3 Q2: Poisson model + Gamma prior

Model: Y1, . . . ,YN | λ i.i.d.∼ Pois(λ).

(a) Prior λ ∼ Gamma(α, β). Derive posterior.

(b) Fix α = 1. Discuss effect of β on posterior.

(c) Derive posterior predictive for a new observation ỹ .

Hint (given): Negative Binomial pmf with parameters r , p:

π(k | r , p) = Γ(k + r)

Γ(r) k!
(1− p)kpr , k ∈ {0, 1, 2, . . . }.
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Q2(a) Posterior derivation

Likelihood kernel:

π(y | λ) =
N∏
i=1

λyi e−λ

yi !
∝ λ

∑N
i=1 yi e−Nλ.

Gamma prior (rate parameterization):

π(λ) =
βα

Γ(α)
λα−1e−βλ ∝ λα−1e−βλ.

Posterior kernel:
π(λ | y) ∝ λ

∑
yi+α−1 e−(N+β)λ.

Therefore

λ | y ∼ Gamma
(
α+

N∑
i=1

yi , β + N
)
.
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Q2(b) Effect of β when α = 1

With α = 1,

λ | y ∼ Gamma
(
1 +

N∑
i=1

yi , β + N
)
.

For Gamma(a, b) (shape a, rate b):

E[λ | y ] = 1 +
∑

yi
β + N

, Var(λ | y) = 1 +
∑

yi
(β + N)2

.

Interpretation:

Larger β (stronger prior pull toward smaller λ) ⇒ smaller posterior mean and variance.

Smaller β ⇒ weaker prior (data dominates more), larger mean/variance.
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Q2(c) Posterior predictive π(ỹ | y)

π(ỹ | y) =
∫

π(ỹ | λ)π(λ | y) dλ, π(ỹ | λ) = λỹe−λ

ỹ !
.

Plug in posterior λ | y ∼ Gamma(α+
∑

yi , β + N) and integrate:

π(ỹ | y) =
Γ
(
ỹ + α+

∑
yi
)

ỹ ! Γ
(
α+

∑
yi
) ( β + N

β + N + 1

)α+
∑

yi ( 1

β + N + 1

)ỹ

.

This matches NegBin(r , p) with

r = α+
N∑
i=1

yi , p =
β + N

β + N + 1
.

Takeaway: Poisson likelihood + Gamma posterior ⇒ Negative Binomial posterior predictive.
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π(ỹ | y) =
Γ
(
ỹ + α+

∑
yi
)
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Negative Binomial distribution NegBin(r , p): quick intro

Interpretation (one common parametrisation)

Run i.i.d. Bernoulli trials with success probability p. Stop when you have observed r successes. Let K
be the number of failures before the r-th success. Then K ∼ NegBin(r , p), with support
K ∈ {0, 1, 2, . . . }.

PMF (matches the hint used in our question)

Pr(K = k) =

(
k + r − 1

k

)
(1− p)kpr =

Γ(k + r)

Γ(r) k!
(1− p)kpr , k = 0, 1, 2, . . .

Mean / variance (for this parametrisation)

E[K ] =
r(1− p)

p
, Var(K ) =

r(1− p)

p2
.

(Variance is larger than the mean unless p = 1, hence “overdispersed Poisson” behaviour.)
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.

Why it appeared in our sheet

If Ỹ | λ ∼ Pois(λ) and λ | y ∼ Gamma(a, b), then integrating out λ gives

Ỹ | y ∼ NegBin
(
r = a, p = b

b+1

)
under the same NegBin(r , p) convention. :
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Q3: Density of a transformed variable

Let X ∼ π(x) be continuous and Y = h(X ) where h is strictly monotonic and smooth.

Show:

πY (y) = πX (x)

∣∣∣∣∂x∂y
∣∣∣∣ .

Then: if X ∼ Exp(1), find the density of Y =
√
X .
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Q3 Solution: general change of variables

If h is strictly increasing:

FY (y) = Pr(Y ≤ y) = Pr(h(X ) ≤ y) = Pr
(
X ≤ h−1(y)

)
= FX (h

−1(y)).

Differentiate w.r.t. y :

πY (y) =
d

dy
FX (h

−1(y)) = πX (h
−1(y))h−1(y)y .

If h is decreasing, a minus sign appears; both cases combine to

πY (y) = πX (x)

∣∣∣∣dxdy
∣∣∣∣ .
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Q3 Solution: X ∼ Exp(1), Y =
√
X

Here πX (x) = e−x for x > 0. Let Y =
√
X ⇒ X = Y 2 with y > 0.

Compute Jacobian:
dx

dy
=

d

dy
= 2y .

Therefore

πY (y) = πX (y
2)

∣∣∣∣dxdy
∣∣∣∣ = e−y2

· 2y , y > 0.

Check: looks like a Rayleigh-type shape; integrates to 1 on (0,∞).
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Q4: Exponential model + invariant prior

Let X1, . . . ,Xn | λ i.i.d.∼ Exp(λ) with density

π(x | λ) = λe−λx , x > 0.

(a) Construct an invariant (Jeffreys) prior for λ.

(b) Derive posterior using this prior.

(c) What do you notice about this prior?
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Q4(a) Jeffreys prior via Fisher information

Single-observation log-likelihood:
log π(X | λ) = log λ− λX .

Derivatives:
∂

∂λ
log π(X | λ) = 1

λ
− X ,

∂2

∂λ2
log π(X | λ) = − 1

λ2
.

Fisher information:

I (λ) = E
[
− ∂2

∂λ2
log π(X | λ)

]
=

1

λ2
.

Jeffreys prior:

π(λ) ∝
√

I (λ) =
1

λ
, λ > 0.
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Q4(b) Posterior with Jeffreys prior

Likelihood for n i.i.d. observations:

π(x | λ) =
n∏

i=1

λe−λxi = λn exp

(
−λ

n∑
i=1

xi

)
.

Multiply by prior π(λ) ∝ 1/λ:

π(λ | x) ∝ λn−1 exp

(
−λ

n∑
i=1

xi

)
.

Identify Gamma kernel:

λ | x ∼ Gamma

(
n,

n∑
i=1

xi

)
,

(shape n, rate
∑

xi ).
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Q4(c) What do you notice about the prior?

Consider the integral over (0,∞): ∫ ∞

0

1

λ
dλ = ∞.

So the Jeffreys prior π(λ) ∝ 1/λ is improper.

But: the posterior Gamma(n,
∑

xi ) is a proper distribution for n ≥ 1. So it is still usable (common in
objective Bayes).
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Wrap-up: patterns to remember

Conjugacy: Beta–Binomial and Gamma–Poisson give posteriors in same family.

Sequential = batch: updating doesn’t depend on when data arrives.

Posterior predictive: integrate out parameter; Gamma–Poisson ⇒ Negative Binomial.

Transforms: πY (y) = πX (x)
∣∣∣dxdy ∣∣∣.

Jeffreys prior: π(λ) ∝
√
I (λ) can be improper but yield proper posterior.
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