Lab 3.8 excerses



Exercise 3-1

We have 50 integer observations and model
Yi| A~ Poisson(A), i=1,...
We will:

» plot the data,

» compute a likelihood on a grid,

v

define an Exponential prior,

v

compute and normalise the grid posterior,

v

compare with the conjugate analytic posterior (Gamma).



1) View the data

# View Data ———mmmm oo

1’ 3’ 7, 4’ 2, 6, 8’ 8’ 4’ 5’

1’ 2, 7’ 8’ 4, 3’ 7, 3’ 3, 5, 2’ 6’

y <-c(2, 6, 2, 3, 4, 3, 4, 3,1, 2,3, 2,6,6,2,3,5,1,2,2,4,2,5,3,
6, 4,
7, 4)

= """ xlab = "Reaction time (ms)")

hist(y, main



2) Likelihood and log-likelihood

Poisson pmf:
Nie™?
Likelihood: .
Liy) =TTl [ A) o A=,
i=1
Log-likelihood:

log L(A;y) = _log p(yi | A).
i=1



3) Likelihood on a grid (R)

# Set Up Likelihood Function ----------------——-----—ommmmmm
lambda <- seq(0, 10, 0.01) #grid of lambda values

likelihood.function <- function(lambda, y) prod(dpois(y, lambda))

#compute likelihood

log.likelihood.function <- function(lambda, y) sum(dpois(y, lambda, log = TRUE))
#compute loglikelihood

likelihood <- sapply(lambda, likelihood.function, y)
#evaluate at grid of points

log.likelihood <- sapply(lambda, log.likelihood.function, y)
#evaluate at grid of points



4) Prior on lambda (R)

Prior choice:
A ~ Exponential(0.1),  m(\) = 0.1e"%*.

# Set Up Prior Computationally —-——-———-———————————————————————————————————-
lambda <- seq(0, 10, 0.01) #grid of lambda values

prior <- dexp(lambda, 0.1)

log.prior <- dexp(lambda, 0.1, log = TRUE)

plot(lambda, prior, type = ’1’, xlab = expression(lambda), ylab = "density")



5) Grid posterior + trapezium normalisation (R)

Bayes rule (up to proportionality):
(A | y) o< m(A) L(A y).

# Construct Posterior Distribution Computationally ---—-—----------—————————-
posterior <- prior*likelihood

integrating.factor <- 0.5%0.01*(posterior[1] + posterior[1001]

+ 2xsum(posterior[-c(1, 1001)])) #Using trapezium rule

posterior <- posterior/integrating.factor #normalise

plot(lambda, posterior, type = ’1’, xlab = expression(lambda),
ylab = "posterior density")



6) Analytic posterior (conjugacy)

Exponential(0.1) is Gamma(shape=1, rate=0.1). Conjugacy gives:
Ay~ Gamma(l + Zy,-, 0.1+ n).
i=1

With n = 50:
Ay~ Gamma(Zy +1, 50.1).



7) Overlay grid vs analytic posterior (R)

# Construct Posterior Distribution Analytically -----———---—----———————————-
# The analytical distribution is Gamma(sum(y)+1, 50.1) (shape-rate)

posteiror.analytical <- dgamma(lambda, sum(y) + 1, 50.01)

plot(lambda, posterior, type = ’1’, xlab = expression(lambda),
ylab = "posterior demnsity")

lines(lambda, posteiror.analytical, col = 2)

max (abs(posterior - posteiror.analytical)) #maximum absolute error

Note: the rate should be 50.1 (not 50.01) if prior rate is 0.1 and n = 50.



Exercise 3.2

We observe positive data yi,..., yny and assume an Exponential model:
Y: | A ~ Exponential(\), Flyi | \) =Xe ™, y; >0, A>0.

We place a Beta prior on A\ and compute the posterior w(\ | y) numerically on a grid.

Important constraint: A Beta prior is supported on [0, 1], so we are implicitly restricting
A€ [0,1].



1) View data

# View Data -——--————-————————— -

y <- c(1.95, 1.46, 4.81, 1.52, 4.24, 3.00, 0.46, 2.27, 1.76, 0.41)

hist(y, main = "", xlab = "y")
N <- length(y)

Here N = the number of observations (sample size).



2) Likelihood for the Exponential rate A

Because
Flyi | A) = Ae ™,

the likelihood is
N N
Lxy) = H)\e*)‘y" =\N exp( - AZy,-).
i=1 i=1

So, up to proportionality,
N

LA y) )\Nexp(f )\Zy,-).

i=1
Log-likelihood:

N
log L(A;y) = Nlog A — )\Zy,-.
i=1



3) Compute likelihood on a grid (R)

# Set Up Likelihood Function ---——---------------—-————————————————————————
lambda <- seq(0, 1, 0.01) #grid of lambda values

likelihood.function <- function(lambda, y) prod(dexp(y, lambda))
#compute likelihood

log.likelihood.function <- function(lambda, y) sum(dexp(y, lambda, log = TRUE))
#compute loglikelihood

likelihood <- sapply(lambda, likelihood.function, y)
#evaluate at grid of points

log.likelihood <- sapply(lambda, log.likelihood.function, y)
#evaluate at grid of points

Note: dexp(y, rate=lambda) expects A > 0. Including A = 0 can produce -Inf in logs.



4) Prior: Beta(a, ) on A € [0,1]

We use a Beta prior:
A~ Beta(a, ),  m(A) o A*TH1 -2l 0< A<

In your code: o =1, 5 =1, so w(A) is Uniform(0, 1).



5) Prior computation (R)

# Set Up Prior Computationally -------------—---——-————————————————————————
prior <- dbeta(lambda, 1, 1)
log.prior <- dbeta(lambda, 1, 1,

=
o
o
]
=
[
z3]
~

plot(lambda, prior, type = ’1°,
xlab = expression(lambda), ylab

"density")



6) Posterior up to proportionality

Posterior is proportional to prior x likelihood:
T(Ay) o< m(A) L(Ary).

Combining the expressions,

N

(A |y) « )\0‘*1(1 — )\)5*1 AN exp( — )\Zy,-).
i=1

So
(A |y) o AV L =2 exp( — Azy,),

which matches your comment.

Key point: This is not a standard named posterior family (because of the exp(—A>_ y;) term
with Beta support).



7) Grid posterior + trapezium normalisation (R)

# Construct Posterior Distribution Computationally ------------——--———---—-
posterior <- prior*likelihood

integrating.factor <- 0.5%0.01*(posterior[1] + posterior[101] +
2xsum(posterior[-c(1, 101)])) # trapezium rule

posterior <- posterior/integrating.factor # normalise

plot(lambda, posterior, type = ’17,
xlab = expression(lambda), ylab = "posterior density")

This numerically approximates fol w(A)L(A; y) dX to normalise the posterior.



8) Recommended stability tweak (avoid A = 0)
Because log A blows up at A = 0, it is often safer to start the grid at a small positive value.

# Safer grid (avoid lambda = 0 exactly)
lambda <- seq(le-4, 1, 0.01)

log.likelihood <- sapply(lambda, log.likelihood.function, y)
log.prior <- dbeta(lambda, 1, 1, log = TRUE)

log.post <- log.prior + log.likelihood
log.post <- log.post - max(log.post) # stabilise
post.unnorm <- exp(log.post)

h <- 0.01
Z <- 0.5*%h*(post.unnorm[1] + post.unnorm[length(post.unnorm)] +

2xsum(post.unnorm[-c(1, length(post.unnorm))]))

posterior <- post.unnorm / Z



Take-home

> Exponential rate likelihood gives L(\;y) oc \Ne= 22V
» Beta(a, 3) prior restricts A € [0, 1].

» Posterior is proportional to

AN+a=1(1 _ \)B- exp( Ay )

which we normalise numerically using the trapezium rule.

» For numerical stability, avoid including A = 0 exactly when using log computations.



Excersie 3-3

We assume a Binomial likelihood with a Beta prior:
X | p ~ Binomial(n, p), p ~ Beta(a, ).
Conjugacy gives the posterior

p|x ~ Beta(a+x, B+ (n—x)).

In your code the “effective number of trials” is n = 100/ and the total number of successes is
> x, so
p|x~Beta()_ x+a, 10N - x+8).



Posterior-evaluation function (R)

# Function for posterior distribution ------------—---———-——————————— oo
#This function computes the posterior distribution

#It has four inputs: sum.x and N describing the data, and alpha and beta
#It outputs a vector evaluating the posterior distribution at [0, 0.01,
evaluate.posterior <- function(sum.x, N, alpha, beta){

#Create grid
p <- seq(0, 1, 0.01)

#Evaluate posterior
posterior <- dbeta(p, sum.x + alpha, 100%N - sum.x + beta)

#Return posterior
return(posterior)

Note: the grid is [0,1] (so the comment “...,10" should be “...,1").



What are we varying and why?

Here we explore prior sensitivity by fixing & = 2 and varying 8 over a grid:
B €]0.01,10].

This changes the prior mean
e
E[p]prior = M7
and therefore changes how strongly the prior pulls the posterior when data are limited.
We will compare:
> a large data case: N =150, ) x = 2971,

» a low data case: N =5, Y x =101



Large data scenario: compute posteriors for many 3

# Large data scenario ————————————————————-———————— -
p <- seq(0, 1, 0.01) #Create grid of p values
beta <- seq(0.01, 10, 0.01) #Create grid of beta values

all.posteriors <- sapply(beta, evaluate.posterior,
sum.x = 2971, N = 150, alpha = 2)
Interpretation: all.posteriors is a matrix:
» rows correspond to p € {0,0.01,...,1},

» columns correspond to different 3 values.



Large data: overlay posterior vs prior for one 3

#Plot Posterior and Prior
plot(p, all.posteriors[, 1000], type = ’1’, xlab = "p", ylab = "density")
lines(p, dbeta(p, 2, beta[1000]), col = 2)

What you should see:
» The posterior (black) is much tighter than the prior (red).

» With lots of data, the posterior is dominated by the likelihood, so it barely changes as
changes.



Large data: prior mean vs posterior mean

For Beta(a, 3):
a

E rior — . 5
For the posterior Beta(}" x + «, 100N — > x + 3):

Bipln Sx+a Y Xx+ta
Plrost = (S5 ¥ o)+ (100N —S.x+ 8) 100N +a+p

With o =2, N =150, > x =2971:

2971 + 2

Ep]oet = .
[Pleest = 100 150 72 7 5




Large data: mean curves (R)

#The prior mean is alpha/(alpha + beta).
#The posterior mean is (sum(x)+alpha)/(alpha + beta + 100N)

prior.mean <- 2/(2 + beta)
posterior.mean <- (2971 + 2)/(2 + 100%150 + beta)

#Create Plots
plot(beta, posterior.mean, type = ’1’, ylim = c(0, 1),

xlab = expression(beta), ylab = "posterior mean")
plot(prior.mean, posterior.mean, type = ’1’, ylim = c(0, 1),
xlab = "prior mean", ylab = "posterior mean")

Idea: with large data, E[p]post changes very little as 3 changes.



Low data scenario: compute posteriors for many (3

# Low data scenario --————-————————————————————————— - ———————————
p <- seq(0, 1, 0.01) #Create grid of p values
beta <- seq(0.01, 10, 0.01) #Create grid of beta values

all.posteriors <- sapply(beta, evaluate.posterior,
sum.x = 101, N = 5, alpha = 2)

Now 100N = 500 trials in total, so the data are much less informative than the 100N = 15000
case.



Low data: overlay posterior vs prior for one (3

#Plot Posterior and Prior
plot(p, all.posteriors[, 500], type = ’1’, xlab = "p", ylab = "density")
lines(p, dbeta(p, 2, beta[500]), col = 2)

What you should see:
» The posterior is still influenced by the prior (less peaked than in large data).

» Changing [ changes the prior mean and can shift/spread the posterior.



Low data: posterior mean

With a =2, N=5, > x=101:

101+2 103
100-5+2+3 502+ 3"

IE[p] post —

We again compare prior mean vs posterior mean:

2 103

IE[P]prior = m» IE[P]post = m



Low data: mean curves (R)

#The prior mean is alpha/(alpha + beta).
#The posterior mean is (sum(x)+alpha)/(alpha + beta + 100N)

prior.mean <- 2/(2 + beta)
posterior.mean <- (101 + 2)/(2 + 100*5 + beta)

#Create Plots
plot(beta, posterior.mean, type = ’1’, ylim = c(0, 1),
xlab = expression(beta), ylab = "posterior mean")
plot(prior.mean, posterior.mean, type = ’1’, ylim = c(0, 1),
xlab = "prior mean", ylab = "posterior mean")



Conclusion: prior sensitivity vs data size

» Large data: the posterior is dominated by the likelihood. Varying 8 has a small effect.

» Low data: the posterior is more sensitive to the prior. Varying 3 shifts the posterior and
its mean more noticeably.

» Your final comment matches the general message: some posterior summaries can look
“invariant” to 8 when data are informative, but changing « (shape near 0) can have a
stronger effect.



