
Lab 3.8 excerses

Exercise 3-1

We have 50 integer observations and model

Yi | λ ∼ Poisson(λ), i = 1, . . . , 50.

We will:

▶ plot the data,

▶ compute a likelihood on a grid,

▶ define an Exponential prior,

▶ compute and normalise the grid posterior,

▶ compare with the conjugate analytic posterior (Gamma).

1) View the data

View Data ---

y <- c(2, 6, 2, 3, 4, 3, 4, 3, 1, 2, 3, 2, 6, 6, 2, 3, 5, 1, 2, 2, 4, 2, 5, 3,

6, 4, 1, 2, 7, 8, 4, 3, 7, 3, 3, 5, 2, 6, 1, 3, 7, 4, 2, 6, 8, 8, 4, 5,

7, 4)

hist(y, main = "", xlab = "Reaction time (ms)")

2) Likelihood and log-likelihood

Poisson pmf:

p(yi | λ) =
λyi e−λ

yi !
, λ ≥ 0.

Likelihood:

L(λ; y) =
n∏

i=1

p(yi | λ) ∝ λ
∑

i yi e−nλ.

Log-likelihood:

log L(λ; y) =
n∑

i=1

log p(yi | λ).

3) Likelihood on a grid (R)

Set Up Likelihood Function --

lambda <- seq(0, 10, 0.01) #grid of lambda values

likelihood.function <- function(lambda, y) prod(dpois(y, lambda))

#compute likelihood

log.likelihood.function <- function(lambda, y) sum(dpois(y, lambda, log = TRUE))

#compute loglikelihood

likelihood <- sapply(lambda, likelihood.function, y)

#evaluate at grid of points

log.likelihood <- sapply(lambda, log.likelihood.function, y)

#evaluate at grid of points

4) Prior on lambda (R)

Prior choice:
λ ∼ Exponential(0.1), π(λ) = 0.1e−0.1λ.

Set Up Prior Computationally ---

lambda <- seq(0, 10, 0.01) #grid of lambda values

prior <- dexp(lambda, 0.1)

log.prior <- dexp(lambda, 0.1, log = TRUE)

plot(lambda, prior, type = ’l’, xlab = expression(lambda), ylab = "density")

5) Grid posterior + trapezium normalisation (R)

Bayes rule (up to proportionality):

π(λ | y) ∝ π(λ) L(λ; y).

Construct Posterior Distribution Computationally ------------------------

posterior <- prior*likelihood

integrating.factor <- 0.5*0.01*(posterior[1] + posterior[1001]

+ 2*sum(posterior[-c(1, 1001)])) #Using trapezium rule

posterior <- posterior/integrating.factor #normalise

plot(lambda, posterior, type = ’l’, xlab = expression(lambda),

ylab = "posterior density")

6) Analytic posterior (conjugacy)

Exponential(0.1) is Gamma(shape=1, rate=0.1). Conjugacy gives:

λ | y ∼ Gamma
(
1 +

n∑
i=1

yi , 0.1 + n
)
.

With n = 50:
λ | y ∼ Gamma

(∑
y + 1, 50.1

)
.

7) Overlay grid vs analytic posterior (R)

Construct Posterior Distribution Analytically ---------------------------

The analytical distribution is Gamma(sum(y)+1, 50.1) (shape-rate)

posteiror.analytical <- dgamma(lambda, sum(y) + 1, 50.01)

plot(lambda, posterior, type = ’l’, xlab = expression(lambda),

ylab = "posterior density")

lines(lambda, posteiror.analytical, col = 2)

max(abs(posterior - posteiror.analytical)) #maximum absolute error

Note: the rate should be 50.1 (not 50.01) if prior rate is 0.1 and n = 50.

Exercise 3.2

We observe positive data y1, . . . , yN and assume an Exponential model:

Yi | λ ∼ Exponential(λ), f (yi | λ) = λe−λyi , yi ≥ 0, λ > 0.

We place a Beta prior on λ and compute the posterior π(λ | y) numerically on a grid.

Important constraint: A Beta prior is supported on [0, 1], so we are implicitly restricting
λ ∈ [0, 1].

1) View data

View Data ---

y <- c(1.95, 1.46, 4.81, 1.52, 4.24, 3.00, 0.46, 2.27, 1.76, 0.41)

hist(y, main = "", xlab = "y")

N <- length(y)

Here N = the number of observations (sample size).

2) Likelihood for the Exponential rate λ

Because
f (yi | λ) = λe−λyi ,

the likelihood is

L(λ; y) =
N∏
i=1

λe−λyi = λN exp
(
− λ

N∑
i=1

yi
)
.

So, up to proportionality,

L(λ; y) ∝ λN exp
(
− λ

N∑
i=1

yi
)
.

Log-likelihood:

log L(λ; y) = N log λ− λ

N∑
i=1

yi .

3) Compute likelihood on a grid (R)

Set Up Likelihood Function --

lambda <- seq(0, 1, 0.01) #grid of lambda values

likelihood.function <- function(lambda, y) prod(dexp(y, lambda))

#compute likelihood

log.likelihood.function <- function(lambda, y) sum(dexp(y, lambda, log = TRUE))

#compute loglikelihood

likelihood <- sapply(lambda, likelihood.function, y)

#evaluate at grid of points

log.likelihood <- sapply(lambda, log.likelihood.function, y)

#evaluate at grid of points

Note: dexp(y, rate=lambda) expects λ ≥ 0. Including λ = 0 can produce -Inf in logs.

4) Prior: Beta(α, β) on λ ∈ [0, 1]

We use a Beta prior:

λ ∼ Beta(α, β), π(λ) ∝ λα−1(1− λ)β−1, 0 < λ < 1.

In your code: α = 1, β = 1, so π(λ) is Uniform(0, 1).

5) Prior computation (R)

Set Up Prior Computationally ---

prior <- dbeta(lambda, 1, 1)

log.prior <- dbeta(lambda, 1, 1, log = TRUE)

plot(lambda, prior, type = ’l’,

xlab = expression(lambda), ylab = "density")

6) Posterior up to proportionality

Posterior is proportional to prior × likelihood:

π(λ | y) ∝ π(λ) L(λ; y).

Combining the expressions,

π(λ | y) ∝ λα−1(1− λ)β−1 · λN exp
(
− λ

N∑
i=1

yi
)
.

So

π(λ | y) ∝ λN+α−1(1− λ)β−1 exp
(
− λ

N∑
i=1

yi
)
,

which matches your comment.

Key point: This is not a standard named posterior family (because of the exp(−λ
∑

yi) term
with Beta support).

7) Grid posterior + trapezium normalisation (R)

Construct Posterior Distribution Computationally ------------------------

posterior <- prior*likelihood

integrating.factor <- 0.5*0.01*(posterior[1] + posterior[101] +

2*sum(posterior[-c(1, 101)])) # trapezium rule

posterior <- posterior/integrating.factor # normalise

plot(lambda, posterior, type = ’l’,

xlab = expression(lambda), ylab = "posterior density")

This numerically approximates
∫ 1

0
π(λ)L(λ; y) dλ to normalise the posterior.

8) Recommended stability tweak (avoid λ = 0)

Because log λ blows up at λ = 0, it is often safer to start the grid at a small positive value.

Safer grid (avoid lambda = 0 exactly)

lambda <- seq(1e-4, 1, 0.01)

log.likelihood <- sapply(lambda, log.likelihood.function, y)

log.prior <- dbeta(lambda, 1, 1, log = TRUE)

log.post <- log.prior + log.likelihood

log.post <- log.post - max(log.post) # stabilise

post.unnorm <- exp(log.post)

h <- 0.01

Z <- 0.5*h*(post.unnorm[1] + post.unnorm[length(post.unnorm)] +

2*sum(post.unnorm[-c(1, length(post.unnorm))]))

posterior <- post.unnorm / Z

Take-home

▶ Exponential rate likelihood gives L(λ; y) ∝ λNe−λ
∑

y .

▶ Beta(α, β) prior restricts λ ∈ [0, 1].

▶ Posterior is proportional to

λN+α−1(1− λ)β−1 exp
(
− λ

∑
y
)
,

which we normalise numerically using the trapezium rule.

▶ For numerical stability, avoid including λ = 0 exactly when using log computations.

Excersie 3-3

We assume a Binomial likelihood with a Beta prior:

X | p ∼ Binomial(n, p), p ∼ Beta(α, β).

Conjugacy gives the posterior

p | x ∼ Beta
(
α+ x , β + (n − x)

)
.

In your code the “effective number of trials” is n = 100N and the total number of successes is∑
x , so

p | x ∼ Beta
(∑

x + α, 100N −
∑

x + β
)
.

Posterior-evaluation function (R)

Function for posterior distribution -------------------------------------

#This function computes the posterior distribution

#It has four inputs: sum.x and N describing the data, and alpha and beta

#It outputs a vector evaluating the posterior distribution at [0, 0.01, ..., 1]

evaluate.posterior <- function(sum.x, N, alpha, beta){

#Create grid

p <- seq(0, 1, 0.01)

#Evaluate posterior

posterior <- dbeta(p, sum.x + alpha, 100*N - sum.x + beta)

#Return posterior

return(posterior)

}

Note: the grid is [0, 1] (so the comment “...,10” should be “...,1”).

What are we varying and why?

Here we explore prior sensitivity by fixing α = 2 and varying β over a grid:

β ∈ [0.01, 10].

This changes the prior mean

E[p]prior =
α

α+ β
,

and therefore changes how strongly the prior pulls the posterior when data are limited.

We will compare:

▶ a large data case: N = 150,
∑

x = 2971,

▶ a low data case: N = 5,
∑

x = 101.

Large data scenario: compute posteriors for many β

Large data scenario ---

p <- seq(0, 1, 0.01) #Create grid of p values

beta <- seq(0.01, 10, 0.01) #Create grid of beta values

all.posteriors <- sapply(beta, evaluate.posterior,

sum.x = 2971, N = 150, alpha = 2)

Interpretation: all.posteriors is a matrix:

▶ rows correspond to p ∈ {0, 0.01, . . . , 1},
▶ columns correspond to different β values.

Large data: overlay posterior vs prior for one β

#Plot Posterior and Prior

plot(p, all.posteriors[, 1000], type = ’l’, xlab = "p", ylab = "density")

lines(p, dbeta(p, 2, beta[1000]), col = 2)

What you should see:

▶ The posterior (black) is much tighter than the prior (red).

▶ With lots of data, the posterior is dominated by the likelihood, so it barely changes as β
changes.

Large data: prior mean vs posterior mean

For Beta(α, β):

E[p]prior =
α

α+ β
.

For the posterior Beta(
∑

x + α, 100N −
∑

x + β):

E[p]post =
∑

x + α

(
∑

x + α) + (100N −
∑

x + β)
=

∑
x + α

100N + α+ β
.

With α = 2, N = 150,
∑

x = 2971:

E[p]post =
2971 + 2

100 · 150 + 2 + β
.

Large data: mean curves (R)

#The prior mean is alpha/(alpha + beta).

#The posterior mean is (sum(x)+alpha)/(alpha + beta + 100N)

prior.mean <- 2/(2 + beta)

posterior.mean <- (2971 + 2)/(2 + 100*150 + beta)

#Create Plots

plot(beta, posterior.mean, type = ’l’, ylim = c(0, 1),

xlab = expression(beta), ylab = "posterior mean")

plot(prior.mean, posterior.mean, type = ’l’, ylim = c(0, 1),

xlab = "prior mean", ylab = "posterior mean")

Idea: with large data, E[p]post changes very little as β changes.

Low data scenario: compute posteriors for many β

Low data scenario ---

p <- seq(0, 1, 0.01) #Create grid of p values

beta <- seq(0.01, 10, 0.01) #Create grid of beta values

all.posteriors <- sapply(beta, evaluate.posterior,

sum.x = 101, N = 5, alpha = 2)

Now 100N = 500 trials in total, so the data are much less informative than the 100N = 15000

case.

Low data: overlay posterior vs prior for one β

#Plot Posterior and Prior

plot(p, all.posteriors[, 500], type = ’l’, xlab = "p", ylab = "density")

lines(p, dbeta(p, 2, beta[500]), col = 2)

What you should see:

▶ The posterior is still influenced by the prior (less peaked than in large data).

▶ Changing β changes the prior mean and can shift/spread the posterior.

Low data: posterior mean

With α = 2, N = 5,
∑

x = 101:

E[p]post =
101 + 2

100 · 5 + 2 + β
=

103

502 + β
.

We again compare prior mean vs posterior mean:

E[p]prior =
2

2 + β
, E[p]post =

103

502 + β
.

Low data: mean curves (R)

#The prior mean is alpha/(alpha + beta).

#The posterior mean is (sum(x)+alpha)/(alpha + beta + 100N)

prior.mean <- 2/(2 + beta)

posterior.mean <- (101 + 2)/(2 + 100*5 + beta)

#Create Plots

plot(beta, posterior.mean, type = ’l’, ylim = c(0, 1),

xlab = expression(beta), ylab = "posterior mean")

plot(prior.mean, posterior.mean, type = ’l’, ylim = c(0, 1),

xlab = "prior mean", ylab = "posterior mean")

Conclusion: prior sensitivity vs data size

▶ Large data: the posterior is dominated by the likelihood. Varying β has a small effect.

▶ Low data: the posterior is more sensitive to the prior. Varying β shifts the posterior and
its mean more noticeably.

▶ Your final comment matches the general message: some posterior summaries can look
“invariant” to β when data are informative, but changing α (shape near 0) can have a
stronger effect.

