Lab 3.8 excerses

Exercise 3-1

We have 50 integer observations and model
Yi| A~ Poisson(A), i=1,...
We will:

» plot the data,

» compute a likelihood on a grid,

v

define an Exponential prior,

v

compute and normalise the grid posterior,

v

compare with the conjugate analytic posterior (Gamma).

1) View the data

View Data ———mmmm oo

1’ 3’ 7, 4’ 2, 6, 8’ 8’ 4’ 5’

1’ 2, 7’ 8’ 4, 3’ 7, 3’ 3, 5, 2’ 6’

y <-c(2, 6, 2, 3, 4, 3, 4, 3,1, 2,3, 2,6,6,2,3,5,1,2,2,4,2,5,3,
6, 4,
7, 4)

= """ xlab = "Reaction time (ms)")

hist(y, main

2) Likelihood and log-likelihood

Poisson pmf:
Nie™?
Likelihood: .
Liy) =TTl [A) o A=,
i=1
Log-likelihood:

log L(A;y) = _log p(yi | A).
i=1

3) Likelihood on a grid (R)

Set Up Likelihood Function ----------------——-----—ommmmmm
lambda <- seq(0, 10, 0.01) #grid of lambda values

likelihood.function <- function(lambda, y) prod(dpois(y, lambda))

#compute likelihood

log.likelihood.function <- function(lambda, y) sum(dpois(y, lambda, log = TRUE))
#compute loglikelihood

likelihood <- sapply(lambda, likelihood.function, y)
#evaluate at grid of points

log.likelihood <- sapply(lambda, log.likelihood.function, y)
#evaluate at grid of points

4) Prior on lambda (R)

Prior choice:
A ~ Exponential(0.1), m(\) = 0.1e"%*.

Set Up Prior Computationally —-——-———-———————————————————————————————————-
lambda <- seq(0, 10, 0.01) #grid of lambda values

prior <- dexp(lambda, 0.1)

log.prior <- dexp(lambda, 0.1, log = TRUE)

plot(lambda, prior, type = ’1’, xlab = expression(lambda), ylab = "density")

5) Grid posterior + trapezium normalisation (R)

Bayes rule (up to proportionality):
(A | y) o< m(A) L(A y).

Construct Posterior Distribution Computationally ---—-—----------—————————-
posterior <- prior*likelihood

integrating.factor <- 0.5%0.01*(posterior[1] + posterior[1001]

+ 2xsum(posterior[-c(1, 1001)])) #Using trapezium rule

posterior <- posterior/integrating.factor #normalise

plot(lambda, posterior, type = ’1’, xlab = expression(lambda),
ylab = "posterior density")

6) Analytic posterior (conjugacy)

Exponential(0.1) is Gamma(shape=1, rate=0.1). Conjugacy gives:
Ay~ Gamma(l + Zy,-, 0.1+ n).
i=1

With n = 50:
Ay~ Gamma(Zy +1, 50.1).

7) Overlay grid vs analytic posterior (R)

Construct Posterior Distribution Analytically -----———---—----———————————-
The analytical distribution is Gamma(sum(y)+1, 50.1) (shape-rate)

posteiror.analytical <- dgamma(lambda, sum(y) + 1, 50.01)

plot(lambda, posterior, type = ’1’, xlab = expression(lambda),
ylab = "posterior demnsity")

lines(lambda, posteiror.analytical, col = 2)

max (abs(posterior - posteiror.analytical)) #maximum absolute error

Note: the rate should be 50.1 (not 50.01) if prior rate is 0.1 and n = 50.

Exercise 3.2

We observe positive data yi,..., yny and assume an Exponential model:
Y: | A ~ Exponential(\), Flyi | \) =Xe ™, y; >0, A>0.

We place a Beta prior on A\ and compute the posterior w(\ | y) numerically on a grid.

Important constraint: A Beta prior is supported on [0, 1], so we are implicitly restricting
A€ [0,1].

1) View data

View Data -——--————-————————— -

y <- c(1.95, 1.46, 4.81, 1.52, 4.24, 3.00, 0.46, 2.27, 1.76, 0.41)

hist(y, main = "", xlab = "y")
N <- length(y)

Here N = the number of observations (sample size).

2) Likelihood for the Exponential rate A

Because
Flyi | A) = Ae ™,

the likelihood is
N N
Lxy) = H)\e*)‘y" =\N exp(- AZy,-).
i=1 i=1

So, up to proportionality,
N

LA y))\Nexp(f)\Zy,-).

i=1
Log-likelihood:

N
log L(A;y) = Nlog A —)\Zy,-.
i=1

3) Compute likelihood on a grid (R)

Set Up Likelihood Function ---——---------------—-————————————————————————
lambda <- seq(0, 1, 0.01) #grid of lambda values

likelihood.function <- function(lambda, y) prod(dexp(y, lambda))
#compute likelihood

log.likelihood.function <- function(lambda, y) sum(dexp(y, lambda, log = TRUE))
#compute loglikelihood

likelihood <- sapply(lambda, likelihood.function, y)
#evaluate at grid of points

log.likelihood <- sapply(lambda, log.likelihood.function, y)
#evaluate at grid of points

Note: dexp(y, rate=lambda) expects A > 0. Including A = 0 can produce -Inf in logs.

4) Prior: Beta(a,) on A € [0,1]

We use a Beta prior:
A~ Beta(a,), m(A) o A*TH1 -2l 0< A<

In your code: o =1, 5 =1, so w(A) is Uniform(0, 1).

5) Prior computation (R)

Set Up Prior Computationally -------------—---——-————————————————————————
prior <- dbeta(lambda, 1, 1)
log.prior <- dbeta(lambda, 1, 1,

=
o
o
]
=
[
z3]
~

plot(lambda, prior, type = ’1°,
xlab = expression(lambda), ylab

"density")

6) Posterior up to proportionality

Posterior is proportional to prior x likelihood:
T(Ay) o< m(A) L(Ary).

Combining the expressions,

N

(A |y) «)\0‘*1(1 —)\)5*1 AN exp(—)\Zy,-).
i=1

So
(A |y) o AV L =2 exp(— Azy,),

which matches your comment.

Key point: This is not a standard named posterior family (because of the exp(—A>_ y;) term
with Beta support).

7) Grid posterior + trapezium normalisation (R)

Construct Posterior Distribution Computationally ------------——--———---—-
posterior <- prior*likelihood

integrating.factor <- 0.5%0.01*(posterior[1] + posterior[101] +
2xsum(posterior[-c(1, 101)])) # trapezium rule

posterior <- posterior/integrating.factor # normalise

plot(lambda, posterior, type = ’17,
xlab = expression(lambda), ylab = "posterior density")

This numerically approximates fol w(A)L(A; y) dX to normalise the posterior.

8) Recommended stability tweak (avoid A = 0)
Because log A blows up at A = 0, it is often safer to start the grid at a small positive value.

Safer grid (avoid lambda = 0 exactly)
lambda <- seq(le-4, 1, 0.01)

log.likelihood <- sapply(lambda, log.likelihood.function, y)
log.prior <- dbeta(lambda, 1, 1, log = TRUE)

log.post <- log.prior + log.likelihood
log.post <- log.post - max(log.post) # stabilise
post.unnorm <- exp(log.post)

h <- 0.01
Z <- 0.5*%h*(post.unnorm[1] + post.unnorm[length(post.unnorm)] +

2xsum(post.unnorm[-c(1, length(post.unnorm))]))

posterior <- post.unnorm / Z

Take-home

> Exponential rate likelihood gives L(\;y) oc \Ne= 22V
» Beta(a, 3) prior restricts A € [0, 1].

» Posterior is proportional to

AN+a=1(1 _ \)B- exp(Ay)

which we normalise numerically using the trapezium rule.

» For numerical stability, avoid including A = 0 exactly when using log computations.

Excersie 3-3

We assume a Binomial likelihood with a Beta prior:
X | p ~ Binomial(n, p), p ~ Beta(a,).
Conjugacy gives the posterior

p|x ~ Beta(a+x, B+ (n—x)).

In your code the “effective number of trials” is n = 100/ and the total number of successes is
> x, so
p|x~Beta()_ x+a, 10N - x+8).

Posterior-evaluation function (R)

Function for posterior distribution ------------—---———-——————————— oo
#This function computes the posterior distribution

#It has four inputs: sum.x and N describing the data, and alpha and beta
#It outputs a vector evaluating the posterior distribution at [0, 0.01,
evaluate.posterior <- function(sum.x, N, alpha, beta){

#Create grid
p <- seq(0, 1, 0.01)

#Evaluate posterior
posterior <- dbeta(p, sum.x + alpha, 100%N - sum.x + beta)

#Return posterior
return(posterior)

Note: the grid is [0,1] (so the comment “...,10" should be “...,1").

What are we varying and why?

Here we explore prior sensitivity by fixing & = 2 and varying 8 over a grid:
B €]0.01,10].

This changes the prior mean
e
E[p]prior = M7
and therefore changes how strongly the prior pulls the posterior when data are limited.
We will compare:
> a large data case: N =150,) x = 2971,

» a low data case: N =5, Y x =101

Large data scenario: compute posteriors for many 3

Large data scenario ————————————————————-———————— -
p <- seq(0, 1, 0.01) #Create grid of p values
beta <- seq(0.01, 10, 0.01) #Create grid of beta values

all.posteriors <- sapply(beta, evaluate.posterior,
sum.x = 2971, N = 150, alpha = 2)
Interpretation: all.posteriors is a matrix:
» rows correspond to p € {0,0.01,...,1},

» columns correspond to different 3 values.

Large data: overlay posterior vs prior for one 3

#Plot Posterior and Prior
plot(p, all.posteriors[, 1000], type = ’1’, xlab = "p", ylab = "density")
lines(p, dbeta(p, 2, beta[1000]), col = 2)

What you should see:
» The posterior (black) is much tighter than the prior (red).

» With lots of data, the posterior is dominated by the likelihood, so it barely changes as
changes.

Large data: prior mean vs posterior mean

For Beta(a, 3):
a

E rior — . 5
For the posterior Beta(}" x + «, 100N — > x + 3):

Bipln Sx+a Y Xx+ta
Plrost = (S5 ¥ o)+ (100N —S.x+ 8) 100N +a+p

With o =2, N =150, > x =2971:

2971 + 2

Ep]oet = .
[Pleest = 100 150 72 7 5

Large data: mean curves (R)

#The prior mean is alpha/(alpha + beta).
#The posterior mean is (sum(x)+alpha)/(alpha + beta + 100N)

prior.mean <- 2/(2 + beta)
posterior.mean <- (2971 + 2)/(2 + 100%150 + beta)

#Create Plots
plot(beta, posterior.mean, type = ’1’, ylim = c(0, 1),

xlab = expression(beta), ylab = "posterior mean")
plot(prior.mean, posterior.mean, type = ’1’, ylim = c(0, 1),
xlab = "prior mean", ylab = "posterior mean")

Idea: with large data, E[p]post changes very little as 3 changes.

Low data scenario: compute posteriors for many (3

Low data scenario --————-————————————————————————— - ———————————
p <- seq(0, 1, 0.01) #Create grid of p values
beta <- seq(0.01, 10, 0.01) #Create grid of beta values

all.posteriors <- sapply(beta, evaluate.posterior,
sum.x = 101, N = 5, alpha = 2)

Now 100N = 500 trials in total, so the data are much less informative than the 100N = 15000
case.

Low data: overlay posterior vs prior for one (3

#Plot Posterior and Prior
plot(p, all.posteriors[, 500], type = ’1’, xlab = "p", ylab = "density")
lines(p, dbeta(p, 2, beta[500]), col = 2)

What you should see:
» The posterior is still influenced by the prior (less peaked than in large data).

» Changing [changes the prior mean and can shift/spread the posterior.

Low data: posterior mean

With a =2, N=5, > x=101:

101+2 103
100-5+2+3 502+ 3"

IE[p] post —

We again compare prior mean vs posterior mean:

2 103

IE[P]prior = m» IE[P]post = m

Low data: mean curves (R)

#The prior mean is alpha/(alpha + beta).
#The posterior mean is (sum(x)+alpha)/(alpha + beta + 100N)

prior.mean <- 2/(2 + beta)
posterior.mean <- (101 + 2)/(2 + 100*5 + beta)

#Create Plots
plot(beta, posterior.mean, type = ’1’, ylim = c(0, 1),
xlab = expression(beta), ylab = "posterior mean")
plot(prior.mean, posterior.mean, type = ’1’, ylim = c(0, 1),
xlab = "prior mean", ylab = "posterior mean")

Conclusion: prior sensitivity vs data size

» Large data: the posterior is dominated by the likelihood. Varying 8 has a small effect.

» Low data: the posterior is more sensitive to the prior. Varying 3 shifts the posterior and
its mean more noticeably.

» Your final comment matches the general message: some posterior summaries can look
“invariant” to 8 when data are informative, but changing « (shape near 0) can have a
stronger effect.

