
Chapter 4: Sampling
Inverse Transform & Rejection Sampling

1 / 40

Roadmap for today

1 Warm-up: truly random vs pseudo-random number generators
2 Inverse transform sampling

intuition via CDF
inverse distribution function (quantile function)
theorem and proof idea
worked example: Exponential(λ)
how this appears in R

2 / 40

Warm-up: True vs pseudo-random

Question: Which of these are truly random number generators, and which are
pseudo-random?

Physical process / hardware entropy (e.g. thermal noise, radioactive decay)

Coin flips / dice rolls (physical randomness)

Linear congruential generator (LCG)

runif() and friends in R

Key idea:

True RNG uses a physical source of entropy (unpredictable, real-world phenomena).

Pseudo RNG is an algorithm (deterministic given its seed), designed to look random.

3 / 40

Warm-up: True vs pseudo-random

Question: Which of these are truly random number generators, and which are
pseudo-random?

Physical process / hardware entropy (e.g. thermal noise, radioactive decay)

Coin flips / dice rolls (physical randomness)

Linear congruential generator (LCG)

runif() and friends in R

Key idea:

True RNG uses a physical source of entropy (unpredictable, real-world phenomena).

Pseudo RNG is an algorithm (deterministic given its seed), designed to look random.

3 / 40

Answer & takeaway

Generator True / Pseudo? Why

Physical process True randomness from physics
Coin flips/dice (real) True physical unpredictability
Linear congruential (LCG) Pseudo deterministic recurrence; periodicity
runif() in R Pseudo algorithmic PRNG under the hood

Practical note: In statistics/computation, pseudo-random numbers are usually what we
use—as long as the generator is high quality and we manage seeds carefully.

4 / 40

Answer & takeaway

Generator True / Pseudo? Why

Physical process True randomness from physics
Coin flips/dice (real) True physical unpredictability
Linear congruential (LCG) Pseudo deterministic recurrence; periodicity
runif() in R Pseudo algorithmic PRNG under the hood

Practical note: In statistics/computation, pseudo-random numbers are usually what we
use—as long as the generator is high quality and we manage seeds carefully.

4 / 40

Chapter 4: Two big tools

We can often generate Uniform(0,1) random numbers efficiently.

Goal: Use Uniform(0, 1) samples to generate samples from more “exotic” distributions.

Two methods:

1 Inverse transform sampling (works when we can work with the CDF and its inverse)

2 Rejection (envelope) sampling (works when inverse CDF is unavailable)

5 / 40

Chapter 4: Two big tools

We can often generate Uniform(0,1) random numbers efficiently.

Goal: Use Uniform(0, 1) samples to generate samples from more “exotic” distributions.

Two methods:

1 Inverse transform sampling (works when we can work with the CDF and its inverse)

2 Rejection (envelope) sampling (works when inverse CDF is unavailable)

5 / 40

Inverse transform sampling: the picture

Suppose we want samples from a continuous distribution with CDF F (·).

Idea:

draw U ∼ Unif(0, 1) (a vertical coordinate on the CDF scale)
map it to the corresponding x via x = F−1(U)

x

F (x)

F (x)

U

x = F−1(U)
0

1

Interpretation: Uniform mass on [0, 1] is “relabelled” into the target distribution by the
inverse CDF.

6 / 40

Inverse transform sampling: the picture

Suppose we want samples from a continuous distribution with CDF F (·).

Idea:

draw U ∼ Unif(0, 1) (a vertical coordinate on the CDF scale)
map it to the corresponding x via x = F−1(U)

x

F (x)

F (x)

U

x = F−1(U)
0

1

Interpretation: Uniform mass on [0, 1] is “relabelled” into the target distribution by the
inverse CDF.

6 / 40

Inverse transform sampling: the picture

Suppose we want samples from a continuous distribution with CDF F (·).

Idea:

draw U ∼ Unif(0, 1) (a vertical coordinate on the CDF scale)
map it to the corresponding x via x = F−1(U)

x

F (x)

F (x)

U

x = F−1(U)
0

1

Interpretation: Uniform mass on [0, 1] is “relabelled” into the target distribution by the
inverse CDF.

6 / 40

Definition: inverse distribution function (quantile function)

Let X be a real-valued random variable with distribution function (CDF) F .

The inverse distribution function F−1 is defined for u ∈ (0, 1) by

F−1(u) = inf{x ∈ R : F (x) ≥ u}.

Why this definition?

It works cleanly even when F has flat regions or jumps.

It is the right object for proving inverse transform sampling.

7 / 40

Definition: inverse distribution function (quantile function)

Let X be a real-valued random variable with distribution function (CDF) F .

The inverse distribution function F−1 is defined for u ∈ (0, 1) by

F−1(u) = inf{x ∈ R : F (x) ≥ u}.

Why this definition?

It works cleanly even when F has flat regions or jumps.

It is the right object for proving inverse transform sampling.

7 / 40

Theorem: inverse transform theorem

Let F : R → [0, 1] be a continuous distribution function. Let U ∼ Unif(0, 1) and define

Y = F−1(U).

Then Y has distribution function F (i.e. Y ∼ F).

Translation:

U ∼ Unif(0, 1) =⇒ F−1(U) is a sample from the target distribution.

8 / 40

Theorem: inverse transform theorem

Let F : R → [0, 1] be a continuous distribution function. Let U ∼ Unif(0, 1) and define

Y = F−1(U).

Then Y has distribution function F (i.e. Y ∼ F).

Translation:

U ∼ Unif(0, 1) =⇒ F−1(U) is a sample from the target distribution.

8 / 40

Proof idea (step-by-step)

Fix any real number a. We want to show:

P(Y ≤ a) = F (a).

Start from the definition Y = F−1(U):

P(Y ≤ a) = P(F−1(U) ≤ a).

Using the inverse definition,

F−1(U) ≤ a ⇐⇒ U ≤ F (a) (when F is continuous).

So

P(Y ≤ a) = P(U ≤ F (a)) = F (a),

because U ∼ Unif(0, 1) implies P(U ≤ t) = t for t ∈ [0, 1].

9 / 40

Proof idea (step-by-step)

Fix any real number a. We want to show:

P(Y ≤ a) = F (a).

Start from the definition Y = F−1(U):

P(Y ≤ a) = P(F−1(U) ≤ a).

Using the inverse definition,

F−1(U) ≤ a ⇐⇒ U ≤ F (a) (when F is continuous).

So

P(Y ≤ a) = P(U ≤ F (a)) = F (a),

because U ∼ Unif(0, 1) implies P(U ≤ t) = t for t ∈ [0, 1].

9 / 40

Proof idea (step-by-step)

Fix any real number a. We want to show:

P(Y ≤ a) = F (a).

Start from the definition Y = F−1(U):

P(Y ≤ a) = P(F−1(U) ≤ a).

Using the inverse definition,

F−1(U) ≤ a ⇐⇒ U ≤ F (a) (when F is continuous).

So

P(Y ≤ a) = P(U ≤ F (a)) = F (a),

because U ∼ Unif(0, 1) implies P(U ≤ t) = t for t ∈ [0, 1].

9 / 40

Proof idea (step-by-step)

Fix any real number a. We want to show:

P(Y ≤ a) = F (a).

Start from the definition Y = F−1(U):

P(Y ≤ a) = P(F−1(U) ≤ a).

Using the inverse definition,

F−1(U) ≤ a ⇐⇒ U ≤ F (a) (when F is continuous).

So

P(Y ≤ a) = P(U ≤ F (a)) = F (a),

because U ∼ Unif(0, 1) implies P(U ≤ t) = t for t ∈ [0, 1].
9 / 40

Inverse transform: the three-step recipe

To sample from a continuous distribution with density π(x):

1 Compute the CDF:

F (x) =

∫ x

−∞
π(t) dt.

2 Compute the inverse CDF (quantile function) F−1(u).

3 Generate U ∼ Unif(0, 1) and output

X = F−1(U).

Bottleneck: Many distributions have CDFs/inverses that are not available in closed form.

10 / 40

Inverse transform: the three-step recipe

To sample from a continuous distribution with density π(x):

1 Compute the CDF:

F (x) =

∫ x

−∞
π(t) dt.

2 Compute the inverse CDF (quantile function) F−1(u).

3 Generate U ∼ Unif(0, 1) and output

X = F−1(U).

Bottleneck: Many distributions have CDFs/inverses that are not available in closed form.

10 / 40

Inverse transform: the three-step recipe

To sample from a continuous distribution with density π(x):

1 Compute the CDF:

F (x) =

∫ x

−∞
π(t) dt.

2 Compute the inverse CDF (quantile function) F−1(u).

3 Generate U ∼ Unif(0, 1) and output

X = F−1(U).

Bottleneck: Many distributions have CDFs/inverses that are not available in closed form.

10 / 40

Inverse transform: the three-step recipe

To sample from a continuous distribution with density π(x):

1 Compute the CDF:

F (x) =

∫ x

−∞
π(t) dt.

2 Compute the inverse CDF (quantile function) F−1(u).

3 Generate U ∼ Unif(0, 1) and output

X = F−1(U).

Bottleneck: Many distributions have CDFs/inverses that are not available in closed form.

10 / 40

Inverse transform: the three-step recipe

To sample from a continuous distribution with density π(x):

1 Compute the CDF:

F (x) =

∫ x

−∞
π(t) dt.

2 Compute the inverse CDF (quantile function) F−1(u).

3 Generate U ∼ Unif(0, 1) and output

X = F−1(U).

Bottleneck: Many distributions have CDFs/inverses that are not available in closed form.

10 / 40

Inverse transform: the three-step recipe

To sample from a continuous distribution with density π(x):

1 Compute the CDF:

F (x) =

∫ x

−∞
π(t) dt.

2 Compute the inverse CDF (quantile function) F−1(u).

3 Generate U ∼ Unif(0, 1) and output

X = F−1(U).

Bottleneck: Many distributions have CDFs/inverses that are not available in closed form.

10 / 40

Worked example: Exponential(λ)

Let X ∼ Exp(λ) with density

π(x | λ) = λe−λx , x ≥ 0,

and π(x) = 0 otherwise.

We will apply the 3-step recipe to derive an explicit sampling formula.

11 / 40

Worked example: Exponential(λ)

Let X ∼ Exp(λ) with density

π(x | λ) = λe−λx , x ≥ 0,

and π(x) = 0 otherwise.

We will apply the 3-step recipe to derive an explicit sampling formula.

11 / 40

Step 1: Compute the CDF

For x ≥ 0,

F (x) = P(X ≤ x) =

∫ x

0
λe−λt dt =

[
− e−λt

]x
0
= 1− e−λx .

So

F (x) =

{
0, x < 0,

1− e−λx , x ≥ 0.

12 / 40

Step 1: Compute the CDF

For x ≥ 0,

F (x) = P(X ≤ x) =

∫ x

0
λe−λt dt =

[
− e−λt

]x
0
= 1− e−λx .

So

F (x) =

{
0, x < 0,

1− e−λx , x ≥ 0.

12 / 40

Step 2: Invert the CDF

Let u ∈ (0, 1) and solve u = 1− e−λx for x :

u = 1− e−λx

=⇒ e−λx = 1− u =⇒ −λx = log(1− u)

hence

F−1(u) = − 1

λ
log(1− u).

Note: 1− U ∼ Unif(0, 1) as well, so many implementations use − 1
λ log(U).

13 / 40

Step 2: Invert the CDF

Let u ∈ (0, 1) and solve u = 1− e−λx for x :

u = 1− e−λx =⇒ e−λx = 1− u

=⇒ −λx = log(1− u)

hence

F−1(u) = − 1

λ
log(1− u).

Note: 1− U ∼ Unif(0, 1) as well, so many implementations use − 1
λ log(U).

13 / 40

Step 2: Invert the CDF

Let u ∈ (0, 1) and solve u = 1− e−λx for x :

u = 1− e−λx =⇒ e−λx = 1− u =⇒ −λx = log(1− u)

hence

F−1(u) = − 1

λ
log(1− u).

Note: 1− U ∼ Unif(0, 1) as well, so many implementations use − 1
λ log(U).

13 / 40

Step 2: Invert the CDF

Let u ∈ (0, 1) and solve u = 1− e−λx for x :

u = 1− e−λx =⇒ e−λx = 1− u =⇒ −λx = log(1− u)

hence

F−1(u) = − 1

λ
log(1− u).

Note: 1− U ∼ Unif(0, 1) as well, so many implementations use − 1
λ log(U).

13 / 40

Step 2: Invert the CDF

Let u ∈ (0, 1) and solve u = 1− e−λx for x :

u = 1− e−λx =⇒ e−λx = 1− u =⇒ −λx = log(1− u)

hence

F−1(u) = − 1

λ
log(1− u).

Note: 1− U ∼ Unif(0, 1) as well, so many implementations use − 1
λ log(U).

13 / 40

Step 3: Plug in U ∼ Unif(0, 1)

If U ∼ Unif(0, 1), define

X = − 1

λ
log(1− U).

Then
X ∼ Exp(λ).

Final sampling rule (Exponential):

U ∼ Unif(0, 1) ⇒ − 1

λ
log(1− U) ∼ Exp(λ).

14 / 40

Step 3: Plug in U ∼ Unif(0, 1)

If U ∼ Unif(0, 1), define

X = − 1

λ
log(1− U).

Then
X ∼ Exp(λ).

Final sampling rule (Exponential):

U ∼ Unif(0, 1) ⇒ − 1

λ
log(1− U) ∼ Exp(λ).

14 / 40

Step 3: Plug in U ∼ Unif(0, 1)

If U ∼ Unif(0, 1), define

X = − 1

λ
log(1− U).

Then
X ∼ Exp(λ).

Final sampling rule (Exponential):

U ∼ Unif(0, 1) ⇒ − 1

λ
log(1− U) ∼ Exp(λ).

14 / 40

Implementation in R

Example. Generate n samples from Exp(λ) via inverse transform.

set.seed(12345) # to reproduce

y <- seq(0, 10, 0.01) #Show on the interval [0, 5]

f <- 1 - exp(-0.5*y) #Construct the cumulative density

#function (CDF)

plot(y, f, type =’l’, xlab = "y", ylab= "CDF")

#Sample u

u <- runif(1)

#Get the corresponding y value

f.inv <- -2*log(1-u)

#plot

segments(x0 = 0, y0 = u, x1 = f.inv, y1 = u, lty = 2)

segments(x0 = f.inv, y0 = 0, x1 = f.inv, y1 = u, lty = 2)

text(x = f.inv, y = -0.01, expression(F[-1](U)), col = 4)

text(x = -.1, y = u, "U", col = 4)

Idea behind rexp(): draw u ∼ Unif(0, 1) and return x = − 1
λ log(1− u) (implemented efficiently).

15 / 40

Example 4.2: Inverse Transform Sampling for the Cauchy(0,1)

Task
Generate samples from the Cauchy distribution with location 0 and scale 1:

X ∼ Cauchy(0, 1).

Method (inverse transform)

If F is the CDF of π, then

U ∼ Unif(0, 1) ⇒ X = F−1(U) ∼ π.

16 / 40

The Cauchy(0,1) density

The standard Cauchy density is

π(x) =
1

πo(1 + x2)
, x ∈ R, πo ≈ 3.14.

Symmetric about 0.

Heavy-tailed (much more mass in the tails than a Gaussian).

17 / 40

Plotting the density in R

R code
x <- seq(-5, 5, 0.01)

y <- 1/(pi*(1 + x^2))

plot(x, y, type = "l")

Figure: Cauchy density

18 / 40

Plotting the density in R

R code
x <- seq(-5, 5, 0.01)

y <- 1/(pi*(1 + x^2))

plot(x, y, type = "l")

Figure: Cauchy density

18 / 40

Inverse transform: what we need

To sample via the inverse transform method, we need the CDF

F (x) =

∫ x

−∞
π(t) dt =

∫ x

−∞

1

πo(1 + t2)
dt,

and then its inverse function F−1. (πo ≈ 3.14)

Sampling rule

Once we know F−1,
U ∼ Unif(0, 1), X = F−1(U).

19 / 40

Inverse transform: what we need

To sample via the inverse transform method, we need the CDF

F (x) =

∫ x

−∞
π(t) dt =

∫ x

−∞

1

πo(1 + t2)
dt,

and then its inverse function F−1. (πo ≈ 3.14)

Sampling rule

Once we know F−1,
U ∼ Unif(0, 1), X = F−1(U).

19 / 40

Step 1: Set up the CDF integral

Start from

F (x) =

∫ x

−∞

1

πo(1 + t2)
dt.

The integrand suggests a trigonometric substitution because

d

dt
arctan(t) =

1

1 + t2
.

We derive the closed form using t = tan θ.

20 / 40

Step 1: Set up the CDF integral

Start from

F (x) =

∫ x

−∞

1

πo(1 + t2)
dt.

The integrand suggests a trigonometric substitution because

d

dt
arctan(t) =

1

1 + t2
.

We derive the closed form using t = tan θ.

20 / 40

Step 2: Substitute t = tan θ

Let
t = tan θ ⇒ dt = sec2(θ) dθ.

Update the limits:

t → −∞ ⇒ θ → −πo

2
, t = x ⇒ θ = arctan(x).

Therefore

F (x) =

∫ arctan(x)

−πo/2

1

πo

(
1 + tan2 θ

) sec2(θ) dθ.

21 / 40

Step 2: Substitute t = tan θ

Let
t = tan θ ⇒ dt = sec2(θ) dθ.

Update the limits:

t → −∞ ⇒ θ → −πo

2
, t = x ⇒ θ = arctan(x).

Therefore

F (x) =

∫ arctan(x)

−πo/2

1

πo

(
1 + tan2 θ

) sec2(θ) dθ.

21 / 40

Step 2: Substitute t = tan θ

Let
t = tan θ ⇒ dt = sec2(θ) dθ.

Update the limits:

t → −∞ ⇒ θ → −πo

2
, t = x ⇒ θ = arctan(x).

Therefore

F (x) =

∫ arctan(x)

−πo/2

1

πo

(
1 + tan2 θ

) sec2(θ) dθ.

21 / 40

Step 3: Use 1 + tan2 θ = sec2 θ

Recall the identity
1 + tan2 θ = sec2 θ.

So the integrand simplifies:

1

πo(1 + tan2 θ)
sec2 θ =

1

πo sec2 θ
sec2 θ =

1

πo
.

Hence

F (x) =

∫ arctan(x)

−πo/2

1

πo
dθ.

22 / 40

Step 3: Use 1 + tan2 θ = sec2 θ

Recall the identity
1 + tan2 θ = sec2 θ.

So the integrand simplifies:

1

πo(1 + tan2 θ)
sec2 θ

=
1

πo sec2 θ
sec2 θ =

1

πo
.

Hence

F (x) =

∫ arctan(x)

−πo/2

1

πo
dθ.

22 / 40

Step 3: Use 1 + tan2 θ = sec2 θ

Recall the identity
1 + tan2 θ = sec2 θ.

So the integrand simplifies:

1

πo(1 + tan2 θ)
sec2 θ =

1

πo sec2 θ
sec2 θ

=
1

πo
.

Hence

F (x) =

∫ arctan(x)

−πo/2

1

πo
dθ.

22 / 40

Step 3: Use 1 + tan2 θ = sec2 θ

Recall the identity
1 + tan2 θ = sec2 θ.

So the integrand simplifies:

1

πo(1 + tan2 θ)
sec2 θ =

1

πo sec2 θ
sec2 θ =

1

πo
.

Hence

F (x) =

∫ arctan(x)

−πo/2

1

πo
dθ.

22 / 40

Step 3: Use 1 + tan2 θ = sec2 θ

Recall the identity
1 + tan2 θ = sec2 θ.

So the integrand simplifies:

1

πo(1 + tan2 θ)
sec2 θ =

1

πo sec2 θ
sec2 θ =

1

πo
.

Hence

F (x) =

∫ arctan(x)

−πo/2

1

πo
dθ.

22 / 40

Step 4: Evaluate the integral

Compute:

F (x) =

∫ arctan(x)

−πo/2

1

πo
dθ

=

[
θ

πo

]arctan(x)
−πo/2

=
arctan(x)

πo
+

1

2
.

CDF of the standard Cauchy

F (x) =
1

πo
arctan(x) +

1

2
.

23 / 40

Step 4: Evaluate the integral

Compute:

F (x) =

∫ arctan(x)

−πo/2

1

πo
dθ =

[
θ

πo

]arctan(x)
−πo/2

=
arctan(x)

πo
+

1

2
.

CDF of the standard Cauchy

F (x) =
1

πo
arctan(x) +

1

2
.

23 / 40

Step 4: Evaluate the integral

Compute:

F (x) =

∫ arctan(x)

−πo/2

1

πo
dθ =

[
θ

πo

]arctan(x)
−πo/2

=
arctan(x)

πo
+

1

2
.

CDF of the standard Cauchy

F (x) =
1

πo
arctan(x) +

1

2
.

23 / 40

Step 4: Evaluate the integral

Compute:

F (x) =

∫ arctan(x)

−πo/2

1

πo
dθ =

[
θ

πo

]arctan(x)
−πo/2

=
arctan(x)

πo
+

1

2
.

CDF of the standard Cauchy

F (x) =
1

πo
arctan(x) +

1

2
.

23 / 40

Step 5: Invert the CDF

Let u ∈ (0, 1) and set u = F (x):

u =
1

πo
arctan(x) +

1

2
.

Solve for x :

u − 1

2
=

1

πo
arctan(x) ⇒ arctan(x) = πo

(
u − 1

2

)
,

x = tan

(
πo

(
u − 1

2

))
.

Quantile function

F−1(u) = tan

(
πo

(
u − 1

2

))
.

24 / 40

Step 5: Invert the CDF

Let u ∈ (0, 1) and set u = F (x):

u =
1

πo
arctan(x) +

1

2
.

Solve for x :

u − 1

2
=

1

πo
arctan(x)

⇒ arctan(x) = πo

(
u − 1

2

)
,

x = tan

(
πo

(
u − 1

2

))
.

Quantile function

F−1(u) = tan

(
πo

(
u − 1

2

))
.

24 / 40

Step 5: Invert the CDF

Let u ∈ (0, 1) and set u = F (x):

u =
1

πo
arctan(x) +

1

2
.

Solve for x :

u − 1

2
=

1

πo
arctan(x) ⇒ arctan(x) = πo

(
u − 1

2

)
,

x = tan

(
πo

(
u − 1

2

))
.

Quantile function

F−1(u) = tan

(
πo

(
u − 1

2

))
.

24 / 40

Step 5: Invert the CDF

Let u ∈ (0, 1) and set u = F (x):

u =
1

πo
arctan(x) +

1

2
.

Solve for x :

u − 1

2
=

1

πo
arctan(x) ⇒ arctan(x) = πo

(
u − 1

2

)
,

x = tan

(
πo

(
u − 1

2

))
.

Quantile function

F−1(u) = tan

(
πo

(
u − 1

2

))
.

24 / 40

Step 5: Invert the CDF

Let u ∈ (0, 1) and set u = F (x):

u =
1

πo
arctan(x) +

1

2
.

Solve for x :

u − 1

2
=

1

πo
arctan(x) ⇒ arctan(x) = πo

(
u − 1

2

)
,

x = tan

(
πo

(
u − 1

2

))
.

Quantile function

F−1(u) = tan

(
πo

(
u − 1

2

))
.

24 / 40

Final sampling statement

Inverse transform sampler

If
U ∼ Unif(0, 1),

then

X = tan

(
πo

(
U − 1

2

))
∼ Cauchy(0, 1).

This is an exact sampler: no rejection step and no approximation.

25 / 40

Implementation in R

Sampling
n <- 5000

u <- runif(n)

x <- tan(pi*(u - 0.5))

Sanity check: histogram + true density

hist(x, breaks = 100, freq = FALSE, xlim = c(-10,10),

main = "Cauchy(0,1) samples")

curve(1/(pi*(1+t^2)), add = TRUE)

26 / 40

Practical note: very large values are expected

Because tan(·) explodes near ±πo/2:

If U is very close to 0 or 1, then X can be extremely large in magnitude.

This is not a numerical bug: it reflects the heavy tails of the Cauchy distribution.

In practice, runif does not usually return exactly 0 or 1, so the formula is stable.

27 / 40

Where inverse transform breaks down

Inverse transform sampling requires:

(i) F (x) is tractable and (ii) F−1(u) is tractable.

Many common families fail one (or both) of these in closed form:

Normal: F involves a non-elementary integral; F−1 not closed form

Beta/Gamma: F uses incomplete beta/gamma functions; F−1 generally numerical

So we need a second tool: rejection (envelope) sampling.

28 / 40

Rejection sampling: intuition

Setting: we want samples from a target density π(x), but cannot sample from it directly.

We choose a proposal/envelope density q(x) that we can sample from, and a constant
C > 0 such that

π(x)

q(x)
≤ C for all x .

Geometric picture:

sample X ∼ q

generate a uniform “height” and accept if it falls under the target curve

rejected samples are thrown away

29 / 40

Rejection sampling: the picture

x

density
C q(x)

π(x)

X1 X2

accept
reject

Acceptance is more likely where π(x) is large relative to the envelope.

30 / 40

Rejection sampling: formal condition

We want to sample from target density π(x).

Assume we can sample from proposal density q(x) and that there exists C > 0 such that

π(x)

q(x)
≤ C for all x where q(x) > 0.

Equivalently:
π(x) ≤ C q(x) for all x .

Interpretation: Cq is an envelope that sits above π everywhere.

31 / 40

Rejection sampling: algorithm (step-by-step)

Inputs: target π, proposal q, constant C with π(x) ≤ Cq(x).

Repeat until you accept:

1 Sample X ∼ q(x).

2 Sample U ∼ Unif(0, 1).

3 Compute acceptance probability

α(X) =
π(X)

C q(X)
.

4 Accept X if U ≤ α(X); otherwise reject and try again.

The accepted X is a valid sample from π.

32 / 40

Why the constant C matters

C scales the proposal: Cq must dominate π.

Bigger C ⇒ easier to satisfy π ≤ Cq but:

α(X) =
π(X)

Cq(X)
gets smaller ⇒ more rejections.

Smaller C (closer envelope) ⇒ higher acceptance rate, but might fail the dominance
condition.

Design principle: choose q and C so that Cq tightly “hugs” π.

33 / 40

Efficiency: three qualitative cases

Think of Cq as a shape over π.

Very inefficient: envelope is far above π (large wasted area)

Reasonably efficient: envelope just touches the maximum of π

Very efficient: envelope closely matches π across its support

Rule of thumb: acceptance rate is roughly

Acc ≈ area under π

area under Cq
.

Since π is a density,
∫
π(x) dx = 1, so

Acc =
1

C
if q is a normalized density and C is valid.

(We will formalize expected acceptance and expected trial counts later.)
34 / 40

Proof sketch that rejection sampling works

Let X ∼ q and U ∼ Unif(0, 1) independent. We accept when

U ≤ π(X)

Cq(X)
.

Consider the (unnormalized) density of an accepted draw at value x :

P(X ∈ dx and accept) = q(x) dx · P
(
U ≤ π(x)

Cq(x)

)
.

Since U ∼ Unif(0, 1),

P
(
U ≤ π(x)

Cq(x)

)
=

π(x)

Cq(x)
.

Therefore,

P(X ∈ dx and accept) = q(x) dx · π(x)

Cq(x)
=

1

C
π(x) dx .

Conditioning on acceptance removes the factor 1/C , so the accepted X has density π(x).
35 / 40

Putting it together: what you should be able to do

After this lecture (and lab), you should be able to:

classify generators as true vs pseudo-random (and explain why)

use inverse transform sampling when you can compute F and F−1

derive the inverse-CDF sampler for Exp(λ)

explain why inverse transform fails for many common distributions

state the rejection sampling condition π(x) ≤ Cq(x)

implement accept/reject logic and discuss efficiency qualitatively

36 / 40

Quick checks (for discussion)

1 If U ∼ Unif(0, 1), why is 1− U also Uniform(0, 1)?

2 For Exp(λ), show that using − 1
λ log(U) also works.

3 In rejection sampling, what happens if q(x) = 0 somewhere that π(x) > 0?

4 Why is a “tight” envelope good computationally?

37 / 40

Lab preview: what you will code

Inverse transform sampling lab tasks typically look like:

derive F and F−1 for a given distribution (when possible)

generate many samples using F−1(U)

validate: histogram vs theoretical density, sample mean/variance checks

Rejection sampling lab tasks typically look like:

choose a proposal q and constant C

implement accept/reject

estimate acceptance rate empirically

compare different envelopes for efficiency

38 / 40

Pseudocode: Inverse transform sampling

Given: continuous CDF F and quantile function F−1.

Algorithm

1 Draw U ∼ Unif(0, 1).

2 Return X = F−1(U).

Guarantee: X has CDF F .

39 / 40

Pseudocode: Rejection sampling

Given: target density π, proposal density q, constant C such that π(x) ≤ Cq(x).

Algorithm

1 Repeat:
1 Sample X ∼ q.
2 Sample U ∼ Unif(0, 1).
3 If U ≤ π(X)/(Cq(X)), accept and output X .

Guarantee: accepted X has density π.

40 / 40

	Warm-up: True vs Pseudo Random
	Inverse Transform Sampling
	Rejection (Envelope) Sampling
	Mini-checks & guided questions
	Appendix
	Appendix: clean pseudocode slides

