Chapter 4: Sampling

Inverse Transform & Rejection Sampling
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Roadmap for today

@ Warm-up: truly random vs pseudo-random number generators

@ Inverse transform sampling

intuition via CDF

inverse distribution function (quantile function)
theorem and proof idea

worked example: Exponential())

how this appears in R
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Warm-up: True vs pseudo-random

Question: Which of these are truly random number generators, and which are
pseudo-random?

Physical process / hardware entropy (e.g. thermal noise, radioactive decay)
Coin flips / dice rolls (physical randomness)

Linear congruential generator (LCG)

runif () and friends in R
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Warm-up: True vs pseudo-random

Question: Which of these are truly random number generators, and which are
pseudo-random?

@ Physical process / hardware entropy (e.g. thermal noise, radioactive decay)
e Coin flips / dice rolls (physical randomness)
@ Linear congruential generator (LCG)

@ runif () and friends in R

Key idea:
@ True RNG uses a physical source of entropy (unpredictable, real-world phenomena).
@ Pseudo RNG is an algorithm (deterministic given its seed), designed to ook random.
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Answer & takeaway

Generator True / Pseudo? Why

Physical process True randomness from physics

Coin flips/dice (real) True physical unpredictability

Linear congruential (LCG) Pseudo deterministic recurrence; periodicity
runif () in R Pseudo algorithmic PRNG under the hood
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Answer & takeaway

Generator True / Pseudo? Why

Physical process True randomness from physics

Coin flips/dice (real) True physical unpredictability

Linear congruential (LCG) Pseudo deterministic recurrence; periodicity
runif () in R Pseudo algorithmic PRNG under the hood

Practical note: In statistics/computation, pseudo-random numbers are usually what we
use—as long as the generator is high quality and we manage seeds carefully.

4/40



Chapter 4: Two big tools

We can often generate Uniform(0,1) random numbers efficiently.

Goal: Use Uniform(0, 1) samples to generate samples from more “exotic” distributions.

5/40



Chapter 4: Two big tools

We can often generate Uniform(0,1) random numbers efficiently.

Goal: Use Uniform(0, 1) samples to generate samples from more “exotic” distributions.

Two methods:

@ Inverse transform sampling (works when we can work with the CDF and its inverse)

@ Rejection (envelope) sampling (works when inverse CDF is unavailable)
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Inverse transform sampling: the picture

Suppose we want samples from a continuous distribution with CDF F(-).
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Inverse transform sampling: the picture

Suppose we want samples from a continuous distribution with CDF F(-).

Idea:
e draw U ~ Unif(0,1) (a vertical coordinate on the CDF scale)
@ map it to the corresponding x via x = F~1(U)
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Definition: inverse distribution function (quantile function)

Let X be a real-valued random variable with distribution function (CDF) F.

The inverse distribution function F~1 is defined for u € (0,1) by

F~Yu) = inf{x eR: F(x) > u}.
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Definition: inverse distribution function (quantile function)

Let X be a real-valued random variable with distribution function (CDF) F.

The inverse distribution function F~1 is defined for u € (0,1) by
F~Y(u) = inf{x e R: F(x) > u}.
Why this definition?

@ It works cleanly even when F has flat regions or jumps.

o It is the right object for proving inverse transform sampling.

7/40



Theorem: inverse transform theorem

Let F: R — [0, 1] be a continuous distribution function. Let U ~ Unif(0, 1) and define
Y = F1(U).

Then Y has distribution function F (i.e. Y ~ F).
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Theorem: inverse transform theorem

Let F: R — [0, 1] be a continuous distribution function. Let U ~ Unif(0, 1) and define
Y = F1(U).

Then Y has distribution function F (i.e. Y ~ F).

Translation:

U~ Unif(0,1) = F~}(U) is a sample from the target distribution.
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Proof idea (step-by-step)

Fix any real number a. We want to show:

P(Y < a) = F(a).
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Proof idea (step-by-step)

Fix any real number a. We want to show:
P(Y < a) = F(a).

Start from the definition Y = F~1(U):

P(Y < a) =P(F (V) < a).

Using the inverse definition,

FFLlU)<a <= U<F(a) (when F is continuous).
So
P(Y < a) =P(U < F(a)) = F(a),
because U ~ Unif(0,1) implies P(U < t) = t for t € [0,1].
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Inverse transform: the three-step recipe

To sample from a continuous distribution with density m(x):
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Inverse transform: the three-step recipe

To sample from a continuous distribution with density m(x):
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@ Compute the inverse CDF (quantile function) F~1(u).
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Inverse transform: the three-step recipe

To sample from a continuous distribution with density m(x):

@ Compute the CDF:
Flx) = / (1) dt.

—00

@ Compute the inverse CDF (quantile function) F~1(u).
© Generate U ~ Unif(0,1) and output

X =F (V).

Bottleneck: Many distributions have CDFs/inverses that are not available in closed form.
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Worked example: Exponential(\)

Let X ~ Exp(A) with density
(x| A) = Ae ™, x >0,

and 7(x) = 0 otherwise.
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Worked example: Exponential(\)

Let X ~ Exp(A) with density
(x| A) = Ae ™, x >0,
and 7(x) = 0 otherwise.

We will apply the 3-step recipe to derive an explicit sampling formula.
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Step 1: Compute the CDF

For x > 0, §
A =pX <x)= [ dem [ e =1 e
0
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Step 1: Compute the CDF

For x > 0,

So
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Step 2: Invert the CDF

Let u € (0,1) and solve u =1 — e for x:

u=1—e ™M
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Step 2: Invert the CDF

Let u € (0,1) and solve u =1 — e for x:

—Ax

u=1-—e — e M=1-u
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Step 2: Invert the CDF

Let u € (0,1) and solve u =1 — e™™ for x:

—Ax

u=1l-e™ = e™M=1-—u = —Ix=log(l —u)
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Step 2: Invert the CDF

Let u € (0,1) and solve u =1 — e™™ for x:

—Ax

u=1l-e™ = e™M=1-—u = —Ix=log(l —u)

hence 1
F~Y(u) = Y log(1 — u).
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Step 2: Invert the CDF

Let u € (0,1) and solve u =1 — e™™ for x:

—Ax

u=1l-e™ = e™M=1-—u = —Ix=log(l —u)

hence 1
F~Y(u) = Y log(1 — u).

Note: 1 — U ~ Unif(0,1) as well, so many implementations use —3+ log(U).
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Step 3: Plug in U ~ Unif(0, 1)

If U~ Unif(0, 1), define
X = —% log(1 — U).
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Step 3: Plug in U ~ Unif(0, 1)

If U~ Unif(0, 1), define
X = —% log(1 — U).

Then
X ~ Exp()).
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Step 3: Plug in U ~ Unif(0, 1)

If U ~ Unif(0,1), define
1
X = DY log(1 — U).

Then
X ~ Exp()).

Final sampling rule (Exponential):

1
U ~ Unif(0,1) = DY log(1 — U) ~ Exp()).
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Implementation in R

Example. Generate n samples from Exp(\) via inverse transform.

set.seed(12345) # to reproduce

y <- seq(0, 10, 0.01) #Show on the interval [0, 5]

f <- 1 - exp(-0.5%xy) #Construct the cumulative density
#function (CDF)

plot(y, f, type =’1’, xlab = "y", ylab= "CDF")

#Sample u
u <- runif (1)

#Get the corresponding y value
f.inv <- -2xlog(1-u)

#plot

segments(x0 = 0, yO = u, x1 = f.inv, yl = u, 1ty = 2)

segments(x0 = f.inv, yO = 0, x1 = f.inv, y1 = u, 1ty = 2)

text(x = f.inv, y = -0.01, expression(F[-1](U)), col = 4)

text(x = -.1, y = u, "U", col = 4) 15/ 4




Example 4.2: Inverse Transform Sampling for the Cauchy(0,1)

Generate samples from the Cauchy distribution with location 0 and scale 1:

X ~ Cauchy(0,1).

Method (inverse transform)
If F is the CDF of m, then

U~ TUnif(0,1) = X=F*'U)~m.

.
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The Cauchy(0,1) density

The standard Cauchy density is

x €R, m,~3.14.

@ Symmetric about 0.

@ Heavy-tailed (much more mass in the tails than a Gaussian).
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Plotting the density in R

x <- seq(-5, 5, 0.01)
y <= 1/(pix(1 + x°2))
plot(x, y, type = "1")
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Plotting the density in R

x <- seq(-5, 5, 0.01)
y <= 1/(pix(1 + x°2))
plot(x, y, type = "1")
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Inverse transform: what we need

To sample via the inverse transform method, we need the CDF

F(x) = /_Xoow(t) dt = /_Xoo ﬁ dt,

and then its inverse function F~1. ( 7, ~ 3.14)
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Inverse transform: what we need

To sample via the inverse transform method, we need the CDF

F(x) = /_Xoow(t) dt = /_Xoo ﬁ dt,

and then its inverse function F~1. ( 7, ~ 3.14)

Sampling rule

Once we know F~1,
U~ Unif(0,1), X =F V).
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Step 1: Set up the CDF integral

Start from

Fx) = /_X 1 a

e o] 7T0(1 + tz)
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Step 1: Set up the CDF integral

Start from

x 1
F(x) :/_OO —TrE

The integrand suggests a trigonometric substitution because

1
14 ¢2°

%arctan(t) =

We derive the closed form using t = tan .
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Step 2: Substitute t = tanf

Let
t=tanf = dt=sec?(0)do.
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Step 2: Substitute t = tanf

Let
t=tanf = dt=sec?(0)do.

Update the limits:
m
t—>—oo:>9—>—7°, t = x = 6 = arctan(x).
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Step 2: Substitute t = tanf

Let
t=tanf = dt=sec?(0)do.

Update the limits:

t—>—oo:>9—>—%, t = x = 0 = arctan(x).
Therefore
arctan(x) 1 )
F(x) = R P ——— 0) de.
) / b mrtanzg) =@
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Step 3: Use 1 + tan?6 = sec?d

Recall the identity
1+ tan?6 = sec? 4.
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Step 3: Use 1 + tan?6 = sec?d

Recall the identity
1+ tan6 = sec? 0.

So the integrand simplifies:

1 , 1
— 5 ~sec’ l = ————sec’f = —.
7o(1 + tan? 0) sec T, 5ec2 6 sec To

Hence

arctan(x) 1
F(x) = / — db.

—7o/2 To
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Step 4: Evaluate the integral

Compute:

arctan(x) 1
Fx) = / L o

—To/2 To
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Step 4: Evaluate the integral

Compute:
arctan(x) 1 9 arctan(x) t 1
F(x) = / — df = [_] _ arctan(x) | >

_770/2 To —71'0/2 To
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Step 4: Evaluate the integral

Compute:
arctan(x) 1 0 arctan(x) t 1
F(x):/ da-[] :&”(X)Jra

7770/2 To —To/2 To

CDF of the standard Cauchy

1 1
F(x) = — arctan(x) + 5

To
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Step 5: Invert the CDF

Let v € (0,1) and set u = F(x):

! arctan( )+1
u= —arctan(x) + =.
To 2
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Step 5: Invert the CDF

Let v € (0,1) and set u = F(x):

! arctan( )+1
u= —arctan(x) + =.
To 2

Solve for x:

1
= — arcta
o rctan(x)

u—

N =
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Step 5: Invert the CDF

Let v € (0,1) and set u = F(x):
u= L arctan(x) + E
T 2

Solve for x:

1 1 1
— = —arctan(x) = arctan(x)=m|Uu—=),
2 T,

Quantile function
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Final sampling statement

Inverse transform sampler

U ~ Unif(0, 1),

X = tan <7ro (U - %)) ~ Cauchy(0,1).

This is an exact sampler: no rejection step and no approximation.
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Implementation in R

Sampling

n <- 5000

u <- runif(n)

x <- tan(pi*(u - 0.5))

Sanity check: histogram + true density

hist(x, breaks = 100, freq = FALSE, xlim = c(-10,10),
main = "Cauchy(0,1) samples")
curve(1/(pi*(1+t~2)), add = TRUE)

| \
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Practical note: very large values are expected

Because tan(-) explodes near +m,/2:
@ If U is very close to 0 or 1, then X can be extremely large in magnitude.

@ This is not a numerical bug: it reflects the heavy tails of the Cauchy distribution.

In practice, runif does not usually return exactly 0 or 1, so the formula is stable.
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Where inverse transform breaks down

Inverse transform sampling requires:

(i) F(x) is tractable and (i) F~1(u) is tractable.

Many common families fail one (or both) of these in closed form:

e Normal: F involves a non-elementary integral; F~! not closed form

e Beta/Gamma: F uses incomplete beta/gamma functions; F~! generally numerical

So we need a second tool: rejection (envelope) sampling.

28 /40



Rejection sampling: intuition

Setting: we want samples from a target density 7(x), but cannot sample from it directly.

We choose a proposal/envelope density g(x) that we can sample from, and a constant
C > 0 such that
m(x)

q(x)

< C for all x.

Geometric picture:
@ sample X ~ g
@ generate a uniform “height” and accept if it falls under the target curve
@ rejected samples are thrown away
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Rejection sampling: the picture

density
Ca(x)

ject
/ rejec

accept

(x)

|

!

!
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35»444 Y

X

Acceptance is more likely where 7(x) is large relative to the envelope.
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Rejection sampling: formal condition

We want to sample from target density 7(x).

Assume we can sample from proposal density g(x) and that there exists C > 0 such that

m(x)

< C for all x where g(x) > 0.
q(x) )

Equivalently:
m(x) < Cq(x) for all x.

Interpretation: Cq is an envelope that sits above 7 everywhere.
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Rejection sampling: algorithm (step-by-step)

Inputs: target 7, proposal g, constant C with 7(x) < Cq(x).
Repeat until you accept:

© Sample X ~ g(x).

@ Sample U ~ Unif(0, 1).

© Compute acceptance probability

a(X) =

@ Accept X if U < a(X); otherwise reject and try again.

The accepted X is a valid sample from 7.
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Why the constant C matters

C scales the proposal: Cqg must dominate .
Bigger C = easier to satisfy 7 < Cq but:

7(X)
oX) = Cq(X)

gets smaller = more rejections.

Smaller C (closer envelope) = higher acceptance rate, but might fail the dominance
condition.

Design principle: choose g and C so that Cq tightly “hugs” .
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Efficiency: three qualitative cases

Think of Cq as a shape over .

e Very inefficient: envelope is far above 7 (large wasted area)
o Reasonably efficient: envelope just touches the maximum of 7

o Very efficient: envelope closely matches 7 across its support

Rule of thumb: acceptance rate is roughly

area under 7
Acce ———.
area under Cg

Since 7 is a density, [ 7(x)dx =1, so

1
Acc = I if g is a normalized density and C is valid.

(We will formalize expected acceptance and expected trial counts later.)
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Proof sketch that rejection sampling works

Let X ~ g and U ~ Unif(0,1) independent. We accept when

U<

Consider the (unnormalized) density of an accepted draw at value x:

P(X € dx and accept) = g(x) dx - IP’(U < gq(?x))) .

Since U ~ Unif(0, 1),

P(U< ﬂ(x)> (x)

T CGa(x))  Cax)
Therefore,
P(X € dx and accept) = g(x) dx - (7;5;;)) = %W(X) dx.

Conditioning on acceptance removes the factor 1/C, so the accepted X has density 7(x).
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Putting it together: what you should be able to do

After this lecture (and lab), you should be able to:

classify generators as true vs pseudo-random (and explain why)
use inverse transform sampling when you can compute F and F~!
derive the inverse-CDF sampler for Exp(\)

explain why inverse transform fails for many common distributions

state the rejection sampling condition 7(x) < Cq(x)

implement accept/reject logic and discuss efficiency qualitatively

36 /40



Quick checks (for discussion)

Q If U ~ Unif(0,1), why is 1 — U also Uniform(0,1)?

@ For Exp()\), show that using —% log(U) also works.

@ In rejection sampling, what happens if g(x) = 0 somewhere that m(x) > 07
@ Why is a “tight” envelope good computationally?
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Lab preview: what you will code

Inverse transform sampling lab tasks typically look like:
e derive F and F~! for a given distribution (when possible)
@ generate many samples using F~1(U)

e validate: histogram vs theoretical density, sample mean/variance checks

Rejection sampling lab tasks typically look like:
@ choose a proposal g and constant C
@ implement accept/reject
@ estimate acceptance rate empirically
o

compare different envelopes for efficiency
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Pseudocode: Inverse transform sampling

Given: continuous CDF F and quantile function F~1.

Algorithm
@ Draw U ~ Unif(0, 1).
Q@ Return X = F1(V).

Guarantee: X has CDF F.
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Pseudocode: Rejection sampling

Given: target density 7, proposal density g, constant C such that 7(x) < Cq(x).

Algorithm

© Repeat:
@ Sample X ~ gq.
@ Sample U ~ Unif(0,1).
9 If U <7(X)/(Cq(X)), accept and output X.

Guarantee: accepted X has density .
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