Non-informative Priors, Jeffreys Prior, and Frequentist Properties
Sections 3.5-3.7
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3.5 Non-informative priors: why “uniform” can be misleading
Jeffreys prior: definition via Fisher information

Invariance theorem: why Jeffreys prior is reparametrisation-invariant
Examples: Binomial model; Normal mean and improper priors

3.6 Frequentist view: bias/variance of Bayesian estimators; coverage of credible
intervals

3.7 Hierarchical models: hyperpriors and conditional posteriors (Gibbs sampling
motivation)



Motivation: prior choice can matter

» We have seen in examples that prior choice (and prior parameters) affects:
» posterior distributions,

> posterior summaries (mean/MAP),
» and practical conclusions.

P> A classic criticism of Bayesian inference: the prior is subjective.

» One response: use a prior that reflects lack of information about 6.



A very simple model: Bernoulli

Assume

X | 6 ~ Bern(), (x| 0)=0*(1-0)">, 6¢]0,1], x € {0,1}.

» First instinct for “no information”: choose 6 ~ Unif][0, 1].

» But “uniform” depends on how we parametrise the model.



Uniform is not invariant: a reparametrisation

Reparametrise the model using

Y =6%€0,1], 0= \/1.

Then the likelihood becomes

m(x | 9) = (V) (1= V).



Uniform is not invariant: a reparametrisation

Reparametrise the model using
p=02€0,1, 0=/v.
Then the likelihood becomes
m(x | 9) = (V) (1= V).
If we place a uniform prior on 0:
(@) =1, 6€]0,1],

what prior does this imply for ¢?



Change of variables: induced prior on ¥

Using the change-of-variable rule:

w(0) =m0 | 42|,
Here () = /4, so
do 1 1
w2 T "W

» This density is not uniform on [0, 1].
» It places more mass near i) = 0 (equivalently near § = 0).

Conclusion: uniform priors are not invariant to reparametrisation.



Jeffreys’ principle

Sir Harold Jeffreys argued:
If there are two sensible ways to parametrise a model, priors under these
parametrisations should be equivalent.

» Goal: define a “non-informative” prior that is invariant under smooth 1-1
transformations.

» Tool: Fisher information.



Definition: Fisher information

Given a model Y | 0 ~ 7w(y | 6), define the Fisher information

Iy (6) = Var[aé; log (Y | 9)] {;; log (Y | 9)} Y ~n(y | 0).

» Both expressions are equal under standard regularity conditions.

» Intuition: /y (@) measures how informative the data distribution is about 6.



Definition 3.3: Jeffreys invariant prior

Jeffreys prior is defined as

m(0) o /Iy(0).

» Depends on the likelihood through Iy (8).
» Designed to be invariant under smooth one-to-one reparametrisations.

» May be improper (does not integrate to 1), but can still yield a proper posterior.



Theorem 3.1: invariance statement

Let Y | @ ~ 7(y | 0) and reparametrise by
¥ = h(6),
where h is smooth and strictly monotone (so § = h~1(v)) exists). Then Jeffreys prior is
invariant in the sense that
dé

w(w)zww)'w < /I (D).



Proof idea (high level)

Start from
do

m(¢) = =(6) |

So it suffices to show

V@) = Vi@ |5

We do this by computing /ly(¢) from the definition using the chain rule.



Proof sketch (chain rule + score mean zero)
Compute the second derivative:

Iog7r(Y|1/1)] E[‘L( 4 g n(Y | 0)- da)]

Iy(¥) = — a0

* [

Product rule gives two terms:

q2 do d d20
[d@z Iog7r(Y|9)<dw> +@Iog7r(Y|9) sz]'



Proof sketch (chain rule + score mean zero)
Compute the second derivative:

Iog7r(Y|1/1)] E[‘L( 4 g n(Y | 0)- da)].

Iy () = a0

=l

Product rule gives two terms:

q2 do d d20
[d@z Iog7r(Y|9)<dw> +@|Ogﬂ(y|9) sz]'

Key identity (score has mean zero):

EL?Q |og7r(Y|0)] _

So the second term vanishes and

Iy () = Iy(0) (ii) = VIv(¥) =VIy(9)

I



Example 3.8: Binomial model = Beta(1, 1)
Let Y | & ~ Bin(n,#), with pmf

w10 = (J)ora - oy

Log-likelihood:

logm(y | ) = log (;) + ylogf + (n—y)log(1—0).

Derivatives:

2

) y n-—y 0 y _n—y
ay o) =2 - hay 6) = -2 - .
06 BTV =514 pe'em 0 =5~ g




Example 3.8 continued: compute Fisher information

Using Iy (0) = [892 log 7(Y | 9)}

/y(9)2E|:Y n—Y ] _E[Y] , n—E[Y]

Zra—oz| T e T oo
Since E[Y] = nf for Y ~ Bin(n, 0):

nb n— nf n n n

MO =+ a e =0 10 sa—0)

Thus

7(0) < /Iy (0) x 67 /2(1 — )"/,

0 ~ Beta(% 5)



Example 3.9: Normal mean = improper prior

Let
Y | p~N(u0?), o>0known, ucR.

One can show

Therefore Jeffreys prior:



Example 3.9: Normal mean = improper prior

Let
Y | p~N(u0?), o>0known, ucR.

One can show

Therefore Jeffreys prior:

But on R,

so m(p) o 1 is improper.



Improper priors: what and why?

Definition (improper prior). A prior 7(6) on © is improper if

Lﬂ@%:m

» Improper priors are commonly used to express “very weak information”.

» They are acceptable if the posterior is proper (normalisable):

70| y) x 7(y | 0)(6) and Aﬂenw<m.

» Always check posterior propriety when using improper priors.



Frequentist vs Bayesian viewpoint (conceptual)

» Frequentist: there is a true (fixed) parameter 0* generating the data.

» Bayesian: the parameter 6 is modelled as random with prior 7(6).



Frequentist vs Bayesian viewpoint (conceptual)

» Frequentist: there is a true (fixed) parameter 0* generating the data.
» Bayesian: the parameter 6 is modelled as random with prior 7(6).
A useful bridge:

» Treat Bayesian inference as a method to produce estimators/intervals.
» Then analyse their frequentist properties under data generated at 6*:

» bias, variance, MSE,
» coverage of credible intervals.



Example 3.10: conjugate normal model

Model + prior:
Xi, .. Xn | 07 N@0,1), 6~ N(0,1).

Posterior (from conjugacy):

n — 1 - 1
9x~/\/<n+1xn, n+1>, Xn_;Zx,-.

Posterior mean estimator:

n

ﬁn::E[a\X]:nH

Xhn.




Frequentist analysis: assume a true 6*

Now assume (hypothetically)

with fixed 6*.
Compute bias and variance of 5,, = ﬁ?n;
[Qn] 7 [ nl = = Bias(9 )= E[Hn] — 0 = _?9*.
0 n 2 v n 2 1 n
V Hn = ——— V Xn = —_ =
ar( ) <n+1) ar( ) <n+1> n (n+1)2



Compare to MLE and asymptotic agreement

For this model, the MLE is X,, with

_ — 1
Bias(X,) =0, Var(X,) = -
Difference: 1
Xp—Op = Xp— — X, = X, 5o,
n+1 n+1

since X, — 6* and (n+1)7 1 —o.



Compare to MLE and asymptotic agreement

For this model, the MLE is X,, with

_ — 1
Bias(X,) =0, Var(X,) = -
Difference: 1
Xp—Op = Xp— — X, = X, 5o,
n+1 n+1

since X, — 6* and (n+1)7 1 —o.

So posterior mean and MLE agree asymptotically.



Credible interval and frequentist coverage (idea)

A (1 — «) credible interval from the posterior is

~ 1 _
Co(X) =0, % m¢ 11— «/2),

where @1 is the standard Normal quantile function.

Frequentist coverage asks:
Py« (0* € Co(X)), under X; N7 1).
Using asymptotic normality and Slutsky-type arguments, one obtains
Pg« (0" € Co(X)) — 1—a asn— oco.

So (in this model) Bayesian credible intervals are asymptotically valid confidence
intervals.



Theorem 3.2: Bernstein—von Mises (statement)

Let X1,..., X, i Py« with 6* € © C R. Let gMLE be the MLE and /(6*) the Fisher
information.

Under mild regularity conditions and a prior w(6) that is positive near é\MLE, the
posterior is asymptotically normal:

X ~ N(éMLE, (n/(e*))—l), n— oo,

more precisely (in total variation distance):
1 ~ a.s.
> [1501%) = 2o(0)] @0 2250,

where @, is the density of N(@MLE, (nl(6%))71).



Consequence: asymptotic credible interval matches Cl

When 6 € R, BvM implies an approximate (1 — «) credible interval:
1

Co(X) = Oaiii + —
n I(GMLE)

d (1 - /2).

» This matches the usual asymptotic confidence interval from MLE theory.

» Hence coverage satisfies

Py« (0% € Co(X)) = 1 — .



Why hierarchical models?

In many problems:
> We have multiple parameters that relate to each other.

» Prior parameters may themselves be uncertain.



Why hierarchical models?

In many problems:
> We have multiple parameters that relate to each other.
» Prior parameters may themselves be uncertain.

A hierarchical model builds layers:
hyperparameters — parameters — data.

Benefits:
> more flexible modelling of uncertainty,
> reduced sensitivity to fixed prior hyperparameters,

» enables structured inference (e.g. Gibbs sampling).



Example 3.11: Exponential likelihood with hyperprior

Recall (Example 3.4): data y = (y1,...,yn) with
Yi [ A AT Exp()),  A>o0.
Previously we set a fixed prior A ~ Exp(y) and obtained

)\]yNGamma<n+1, Zy;+7).

i=1



Example 3.11: Exponential likelihood with hyperprior

Recall (Example 3.4): data y = (y1,...,yn) with
Yi [ A AT Exp()),  A>o0.
Previously we set a fixed prior A ~ Exp(y) and obtained
n
Ay~ Gamma(n—i—l, Zy;+7> .
i=1

Now treat v as unknown by putting a hyperprior:

v ~ Exp(v).



Hierarchy diagram and joint posterior
Hierarchy:
Yi,-.o, Yo | A~ Exp(\) (likelihood)
Al v ~Exp(y) (prior)
v~ Exp(v)  (hyperprior)
Diagram: v — XA = {Y;},.

Joint posterior:
(A [y) oca(y | M)m(A | 9)7(7).

Up to proportionality (collecting kernel terms):

n
(A, [ y) o< A"y eXP( “AD v+ ’y)) exp(—=v7), A,y >0.
i=1



Conditional posteriors (key for Gibbs sampling)
Use the identity

TNy ly) =7y, )y [y) =7y [y, (A ] y).

To get (A | y, ), keep only terms depending on A:

(A ]y, 7) A”eXP<—A(zn:y;+v)),
i=1

so
n
A y,y~ Gannna<n+17 Zy,-+'y> .

i=1
Similarly, keep only terms depending on ~:

(v ]y, A) xyexp (— (A +v)y),

so
v |y, A~ Gamma(2, X+ v).



Why these conditionals matter

» The conditional posteriors have standard forms (Gamma distributions).
» This makes simulation-based inference straightforward:

> sample A\t ~ (X | y,y(9),

> sample 71 ~ (v | y, AEFD),

which is exactly the structure used by Gibbs sampling (an MCMC method).



Summary

» Uniform priors are not invariant: “non-informative” depends on parametrisation.

> Jeffreys prior uses Fisher information:

and is invariant to smooth 1-1 reparametrisations.
> Examples:
> Binomial = Beta(3, 3),
» Normal mean = m(u) oc 1 (improper).

» Frequentist analysis can study bias/variance/coverage of Bayesian outputs.

» Hierarchical models add hyperpriors; conditional posteriors enable Gibbs sampling.
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