
Non-informative Priors, Jeffreys Prior, and Frequentist Properties
Sections 3.5–3.7



Roadmap

▶ 3.5 Non-informative priors: why “uniform” can be misleading

▶ Jeffreys prior: definition via Fisher information

▶ Invariance theorem: why Jeffreys prior is reparametrisation-invariant

▶ Examples: Binomial model; Normal mean and improper priors

▶ 3.6 Frequentist view: bias/variance of Bayesian estimators; coverage of credible
intervals

▶ 3.7 Hierarchical models: hyperpriors and conditional posteriors (Gibbs sampling
motivation)



Motivation: prior choice can matter

▶ We have seen in examples that prior choice (and prior parameters) affects:
▶ posterior distributions,
▶ posterior summaries (mean/MAP),
▶ and practical conclusions.

▶ A classic criticism of Bayesian inference: the prior is subjective.

▶ One response: use a prior that reflects lack of information about θ.



A very simple model: Bernoulli

Assume

X | θ ∼ Bern(θ), π(x | θ) = θx(1− θ)1−x , θ ∈ [0, 1], x ∈ {0, 1}.

▶ First instinct for “no information”: choose θ ∼ Unif[0, 1].

▶ But “uniform” depends on how we parametrise the model.



Uniform is not invariant: a reparametrisation

Reparametrise the model using

ψ = θ2 ∈ [0, 1], θ =
√
ψ.

Then the likelihood becomes

π(x | ψ) = (
√
ψ)x(1−

√
ψ)1−x .

If we place a uniform prior on θ:

π(θ) = 1, θ ∈ [0, 1],

what prior does this imply for ψ?



Uniform is not invariant: a reparametrisation

Reparametrise the model using

ψ = θ2 ∈ [0, 1], θ =
√
ψ.

Then the likelihood becomes

π(x | ψ) = (
√
ψ)x(1−

√
ψ)1−x .

If we place a uniform prior on θ:

π(θ) = 1, θ ∈ [0, 1],

what prior does this imply for ψ?



Change of variables: induced prior on ψ

Using the change-of-variable rule:

π(ψ) = π(θ(ψ))

∣∣∣∣ dθ(ψ)dψ

∣∣∣∣ .
Here θ(ψ) =

√
ψ, so

dθ

dψ
=

1

2
√
ψ

⇒ π(ψ) = 1 · 1

2
√
ψ
.

▶ This density is not uniform on [0, 1].

▶ It places more mass near ψ = 0 (equivalently near θ = 0).

Conclusion: uniform priors are not invariant to reparametrisation.



Jeffreys’ principle

Sir Harold Jeffreys argued:
If there are two sensible ways to parametrise a model, priors under these
parametrisations should be equivalent.

▶ Goal: define a “non-informative” prior that is invariant under smooth 1–1
transformations.

▶ Tool: Fisher information.



Definition: Fisher information

Given a model Y | θ ∼ π(y | θ), define the Fisher information

IY (θ) = Var

[
∂

∂θ
log π(Y | θ)

]
= −E

[
∂2

∂θ2
log π(Y | θ)

]
, Y ∼ π(y | θ).

▶ Both expressions are equal under standard regularity conditions.

▶ Intuition: IY (θ) measures how informative the data distribution is about θ.



Definition 3.3: Jeffreys invariant prior

Jeffreys prior is defined as
π(θ) ∝

√
IY (θ).

▶ Depends on the likelihood through IY (θ).

▶ Designed to be invariant under smooth one-to-one reparametrisations.

▶ May be improper (does not integrate to 1), but can still yield a proper posterior.



Theorem 3.1: invariance statement

Let Y | θ ∼ π(y | θ) and reparametrise by

ψ = h(θ),

where h is smooth and strictly monotone (so θ = h−1(ψ) exists). Then Jeffreys prior is
invariant in the sense that

π(ψ) = π(θ)

∣∣∣∣ dθdψ
∣∣∣∣ ∝

√
IY (ψ).



Proof idea (high level)

Start from

π(ψ) = π(θ)

∣∣∣∣ dθdψ
∣∣∣∣ .

So it suffices to show √
IY (ψ) =

√
IY (θ)

∣∣∣∣ dθdψ
∣∣∣∣ .

We do this by computing IY (ψ) from the definition using the chain rule.



Proof sketch (chain rule + score mean zero)
Compute the second derivative:

IY (ψ) = −E
[

d2

dψ2
log π(Y | ψ)

]
= −E

[
d

dψ

(
d

dθ
log π(Y | θ) · dθ

dψ

)]
.

Product rule gives two terms:

−E

[
d2

dθ2
log π(Y | θ)

(
dθ

dψ

)2

+
d

dθ
log π(Y | θ) · d2θ

dψ2

]
.

Key identity (score has mean zero):

E
[

d

dθ
log π(Y | θ)

]
= 0.

So the second term vanishes and

IY (ψ) = IY (θ)

(
dθ

dψ

)2

⇒
√
IY (ψ) =

√
IY (θ)

∣∣∣∣ dθdψ
∣∣∣∣ .
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Example 3.8: Binomial model ⇒ Beta(12 ,
1
2)

Let Y | θ ∼ Bin(n, θ), with pmf

π(y | θ) =
(
n

y

)
θy (1− θ)n−y .

Log-likelihood:

log π(y | θ) = log

(
n

y

)
+ y log θ + (n − y) log(1− θ).

Derivatives:

∂

∂θ
log π(y | θ) = y

θ
− n − y

1− θ
,

∂2

∂θ2
log π(y | θ) = − y

θ2
− n − y

(1− θ)2
.



Example 3.8 continued: compute Fisher information

Using IY (θ) = −E
[

∂2

∂θ2
log π(Y | θ)

]
:

IY (θ) = E
[
Y

θ2
+

n − Y

(1− θ)2

]
=

E[Y ]

θ2
+

n − E[Y ]

(1− θ)2
.

Since E[Y ] = nθ for Y ∼ Bin(n, θ):

IY (θ) =
nθ

θ2
+

n − nθ

(1− θ)2
=

n

θ
+

n

1− θ
=

n

θ(1− θ)
.

Thus
π(θ) ∝

√
IY (θ) ∝ θ−1/2(1− θ)−1/2,

i.e.
θ ∼ Beta

(
1
2 ,

1
2

)
.



Example 3.9: Normal mean ⇒ improper prior

Let
Y | µ ∼ N (µ, σ2), σ > 0 known, µ ∈ R.

One can show

IY (µ) =
1

σ2
.

Therefore Jeffreys prior:

π(µ) ∝
√

IY (µ) =
1

σ
∝ 1.

But on R, ∫ ∞

−∞
π(µ) dµ = ∞,

so π(µ) ∝ 1 is improper.
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Improper priors: what and why?

Definition (improper prior). A prior π(θ) on Θ is improper if∫
Θ
π(θ)dθ = ∞.

▶ Improper priors are commonly used to express “very weak information”.

▶ They are acceptable if the posterior is proper (normalisable):

π(θ | y) ∝ π(y | θ)π(θ) and

∫
Θ
π(θ | y)dθ <∞.

▶ Always check posterior propriety when using improper priors.



Frequentist vs Bayesian viewpoint (conceptual)

▶ Frequentist: there is a true (fixed) parameter θ⋆ generating the data.

▶ Bayesian: the parameter θ is modelled as random with prior π(θ).

A useful bridge:

▶ Treat Bayesian inference as a method to produce estimators/intervals.
▶ Then analyse their frequentist properties under data generated at θ⋆:

▶ bias, variance, MSE,
▶ coverage of credible intervals.
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Example 3.10: conjugate normal model

Model + prior:

X1, . . . ,Xn | θ i .i .d∼ N (θ, 1), θ ∼ N (0, 1).

Posterior (from conjugacy):

θ | X ∼ N
(

n

n + 1
X n,

1

n + 1

)
, X n =

1

n

n∑
i=1

Xi .

Posterior mean estimator:

θ̂n := E[θ | X ] =
n

n + 1
X n.



Frequentist analysis: assume a true θ⋆

Now assume (hypothetically)

X1, . . . ,Xn
i .i .d∼ N (θ⋆, 1),

with fixed θ⋆.

Compute bias and variance of θ̂n = n
n+1X n:

E[θ̂n] =
n

n + 1
E[X n] =

n

n + 1
θ⋆ ⇒ Bias(θ̂n) = E[θ̂n]− θ⋆ = − 1

n + 1
θ⋆.

Var(θ̂n) =

(
n

n + 1

)2

Var(X n) =

(
n

n + 1

)2 1

n
=

n

(n + 1)2
.



Compare to MLE and asymptotic agreement

For this model, the MLE is X n with

Bias(X n) = 0, Var(X n) =
1

n
.

Difference:

X n − θ̂n = X n −
n

n + 1
X n =

1

n + 1
X n

P−→ 0,

since X n
P−→ θ⋆ and (n + 1)−1 → 0.

So posterior mean and MLE agree asymptotically.
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Credible interval and frequentist coverage (idea)

A (1− α) credible interval from the posterior is

Cn(X ) = θ̂n ±
1√
n + 1

Φ−1(1− α/2),

where Φ−1 is the standard Normal quantile function.

Frequentist coverage asks:

Pθ⋆
(
θ⋆ ∈ Cn(X )

)
, under Xi

i .i .d∼ N (θ⋆, 1).

Using asymptotic normality and Slutsky-type arguments, one obtains

Pθ⋆
(
θ⋆ ∈ Cn(X )

)
−→ 1− α as n → ∞.

So (in this model) Bayesian credible intervals are asymptotically valid confidence
intervals.



Theorem 3.2: Bernstein–von Mises (statement)

Let X1, . . . ,Xn
i .i .d∼ Pθ⋆ with θ⋆ ∈ Θ ⊆ R. Let θ̂MLE be the MLE and I (θ⋆) the Fisher

information.
Under mild regularity conditions and a prior π(θ) that is positive near θ̂MLE, the
posterior is asymptotically normal:

θ | X ≈ N
(
θ̂MLE, (nI (θ

⋆))−1
)
, n → ∞,

more precisely (in total variation distance):

1

2

∫
|π(θ | X )− φ̂n(θ)| dθ

a.s.−−→ 0,

where φ̂n is the density of N (θ̂MLE, (nI (θ
⋆))−1).



Consequence: asymptotic credible interval matches CI

When θ ∈ R, BvM implies an approximate (1− α) credible interval:

Cn(X ) = θ̂MLE ± 1√
n I (θ̂MLE)

Φ−1(1− α/2).

▶ This matches the usual asymptotic confidence interval from MLE theory.

▶ Hence coverage satisfies

Pθ⋆
(
θ⋆ ∈ Cn(X )

)
→ 1− α.



Why hierarchical models?

In many problems:

▶ We have multiple parameters that relate to each other.

▶ Prior parameters may themselves be uncertain.

A hierarchical model builds layers:

hyperparameters → parameters → data.

Benefits:

▶ more flexible modelling of uncertainty,

▶ reduced sensitivity to fixed prior hyperparameters,

▶ enables structured inference (e.g. Gibbs sampling).
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Example 3.11: Exponential likelihood with hyperprior

Recall (Example 3.4): data y = (y1, . . . , yn) with

Yi | λ
i .i .d∼ Exp(λ), λ > 0.

Previously we set a fixed prior λ ∼ Exp(γ) and obtained

λ | y ∼ Gamma

(
n + 1,

n∑
i=1

yi + γ

)
.

Now treat γ as unknown by putting a hyperprior:

γ ∼ Exp(ν).
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Hierarchy diagram and joint posterior

Hierarchy:
Y1, . . . ,Yn | λ ∼ Exp(λ) (likelihood)

λ | γ ∼ Exp(γ) (prior)

γ ∼ Exp(ν) (hyperprior)

Diagram: γ → λ→ {Yi}ni=1.

Joint posterior:
π(λ, γ | y) ∝ π(y | λ)π(λ | γ)π(γ).

Up to proportionality (collecting kernel terms):

π(λ, γ | y) ∝ λn γ exp
(
− λ

( n∑
i=1

yi + γ
))

exp(−νγ), λ, γ > 0.



Conditional posteriors (key for Gibbs sampling)
Use the identity

π(λ, γ | y) = π(λ | y , γ)π(γ | y) = π(γ | y , λ)π(λ | y).

To get π(λ | y , γ), keep only terms depending on λ:

π(λ | y , γ) ∝ λn exp
(
− λ

( n∑
i=1

yi + γ
))
,

so

λ | y , γ ∼ Gamma

(
n + 1,

n∑
i=1

yi + γ

)
.

Similarly, keep only terms depending on γ:

π(γ | y , λ) ∝ γ exp
(
− (λ+ ν)γ

)
,

so
γ | y , λ ∼ Gamma(2, λ+ ν).



Why these conditionals matter

▶ The conditional posteriors have standard forms (Gamma distributions).
▶ This makes simulation-based inference straightforward:

▶ sample λ(t+1) ∼ π(λ | y , γ(t)),
▶ sample γ(t+1) ∼ π(γ | y , λ(t+1)),

which is exactly the structure used by Gibbs sampling (an MCMC method).



Summary

▶ Uniform priors are not invariant: “non-informative” depends on parametrisation.

▶ Jeffreys prior uses Fisher information:

π(θ) ∝
√

IY (θ),

and is invariant to smooth 1–1 reparametrisations.
▶ Examples:

▶ Binomial ⇒ Beta( 12 ,
1
2 ),

▶ Normal mean ⇒ π(µ) ∝ 1 (improper).

▶ Frequentist analysis can study bias/variance/coverage of Bayesian outputs.

▶ Hierarchical models add hyperpriors; conditional posteriors enable Gibbs sampling.
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