

Non-informative Priors, Jeffreys Prior, and Frequentist Properties

Sections 3.5–3.7

Roadmap

- ▶ **3.5 Non-informative priors:** why “uniform” can be misleading
- ▶ **Jeffreys prior:** definition via Fisher information
- ▶ **Invariance theorem:** why Jeffreys prior is reparametrisation-invariant
- ▶ Examples: Binomial model; Normal mean and *improper* priors
- ▶ **3.6 Frequentist view:** bias/variance of Bayesian estimators; coverage of credible intervals
- ▶ **3.7 Hierarchical models:** hyperpriors and conditional posteriors (Gibbs sampling motivation)

Motivation: prior choice can matter

- ▶ We have seen in examples that **prior choice** (and prior parameters) affects:
 - ▶ posterior distributions,
 - ▶ posterior summaries (mean/MAP),
 - ▶ and practical conclusions.
- ▶ A classic criticism of Bayesian inference: the prior is **subjective**.
- ▶ One response: use a prior that reflects **lack of information** about θ .

A very simple model: Bernoulli

Assume

$$X \mid \theta \sim \text{Bern}(\theta), \quad \pi(x \mid \theta) = \theta^x (1 - \theta)^{1-x}, \quad \theta \in [0, 1], \quad x \in \{0, 1\}.$$

- ▶ First instinct for “no information”: choose $\theta \sim \text{Unif}[0, 1]$.
- ▶ But “uniform” depends on how we parametrise the model.

Uniform is not invariant: a reparametrisation

Reparametrise the model using

$$\psi = \theta^2 \in [0, 1], \quad \theta = \sqrt{\psi}.$$

Then the likelihood becomes

$$\pi(x | \psi) = (\sqrt{\psi})^x (1 - \sqrt{\psi})^{1-x}.$$

Uniform is not invariant: a reparametrisation

Reparametrise the model using

$$\psi = \theta^2 \in [0, 1], \quad \theta = \sqrt{\psi}.$$

Then the likelihood becomes

$$\pi(x | \psi) = (\sqrt{\psi})^x (1 - \sqrt{\psi})^{1-x}.$$

If we place a uniform prior on θ :

$$\pi(\theta) = 1, \quad \theta \in [0, 1],$$

what prior does this imply for ψ ?

Change of variables: induced prior on ψ

Using the change-of-variable rule:

$$\pi(\psi) = \pi(\theta(\psi)) \left| \frac{d\theta(\psi)}{d\psi} \right|.$$

Here $\theta(\psi) = \sqrt{\psi}$, so

$$\frac{d\theta}{d\psi} = \frac{1}{2\sqrt{\psi}} \quad \Rightarrow \quad \pi(\psi) = 1 \cdot \frac{1}{2\sqrt{\psi}}.$$

- ▶ This density is **not uniform** on $[0, 1]$.
- ▶ It places **more mass near** $\psi = 0$ (equivalently near $\theta = 0$).

Conclusion: uniform priors are not invariant to reparametrisation.

Jeffreys' principle

Sir Harold Jeffreys argued:

*If there are two sensible ways to parametrise a model, priors under these parametrisations should be **equivalent**.*

- ▶ Goal: define a “non-informative” prior that is **invariant** under smooth 1–1 transformations.
- ▶ Tool: Fisher information.

Definition: Fisher information

Given a model $Y | \theta \sim \pi(y | \theta)$, define the Fisher information

$$I_Y(\theta) = \text{Var} \left[\frac{\partial}{\partial \theta} \log \pi(Y | \theta) \right] = -\mathbb{E} \left[\frac{\partial^2}{\partial \theta^2} \log \pi(Y | \theta) \right], \quad Y \sim \pi(y | \theta).$$

- ▶ Both expressions are equal under standard regularity conditions.
- ▶ Intuition: $I_Y(\theta)$ measures how **informative** the data distribution is about θ .

Definition 3.3: Jeffreys invariant prior

Jeffreys prior is defined as

$$\pi(\theta) \propto \sqrt{I_Y(\theta)}.$$

- ▶ Depends on the likelihood through $I_Y(\theta)$.
- ▶ Designed to be invariant under smooth one-to-one reparametrisations.
- ▶ May be **improper** (does not integrate to 1), but can still yield a proper posterior.

Theorem 3.1: invariance statement

Let $Y | \theta \sim \pi(y | \theta)$ and reparametrise by

$$\psi = h(\theta),$$

where h is smooth and strictly monotone (so $\theta = h^{-1}(\psi)$ exists). Then Jeffreys prior is invariant in the sense that

$$\pi(\psi) = \pi(\theta) \left| \frac{d\theta}{d\psi} \right| \propto \sqrt{I_Y(\psi)}.$$

Proof idea (high level)

Start from

$$\pi(\psi) = \pi(\theta) \left| \frac{d\theta}{d\psi} \right|.$$

So it suffices to show

$$\sqrt{I_Y(\psi)} = \sqrt{I_Y(\theta)} \left| \frac{d\theta}{d\psi} \right|.$$

We do this by computing $I_Y(\psi)$ from the definition using the chain rule.

Proof sketch (chain rule + score mean zero)

Compute the second derivative:

$$I_Y(\psi) = -\mathbb{E} \left[\frac{d^2}{d\psi^2} \log \pi(Y | \psi) \right] = -\mathbb{E} \left[\frac{d}{d\psi} \left(\frac{d}{d\theta} \log \pi(Y | \theta) \cdot \frac{d\theta}{d\psi} \right) \right].$$

Product rule gives two terms:

$$-\mathbb{E} \left[\frac{d^2}{d\theta^2} \log \pi(Y | \theta) \left(\frac{d\theta}{d\psi} \right)^2 + \frac{d}{d\theta} \log \pi(Y | \theta) \cdot \frac{d^2\theta}{d\psi^2} \right].$$

Proof sketch (chain rule + score mean zero)

Compute the second derivative:

$$I_Y(\psi) = -\mathbb{E} \left[\frac{d^2}{d\psi^2} \log \pi(Y | \psi) \right] = -\mathbb{E} \left[\frac{d}{d\psi} \left(\frac{d}{d\theta} \log \pi(Y | \theta) \cdot \frac{d\theta}{d\psi} \right) \right].$$

Product rule gives two terms:

$$-\mathbb{E} \left[\frac{d^2}{d\theta^2} \log \pi(Y | \theta) \left(\frac{d\theta}{d\psi} \right)^2 + \frac{d}{d\theta} \log \pi(Y | \theta) \cdot \frac{d^2\theta}{d\psi^2} \right].$$

Key identity (score has mean zero):

$$\mathbb{E} \left[\frac{d}{d\theta} \log \pi(Y | \theta) \right] = 0.$$

So the second term vanishes and

$$I_Y(\psi) = I_Y(\theta) \left(\frac{d\theta}{d\psi} \right)^2 \Rightarrow \sqrt{I_Y(\psi)} = \sqrt{I_Y(\theta)} \left| \frac{d\theta}{d\psi} \right|.$$

Example 3.8: Binomial model $\Rightarrow \text{Beta}(\frac{1}{2}, \frac{1}{2})$

Let $Y | \theta \sim \text{Bin}(n, \theta)$, with pmf

$$\pi(y | \theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}.$$

Log-likelihood:

$$\log \pi(y | \theta) = \log \binom{n}{y} + y \log \theta + (n - y) \log(1 - \theta).$$

Derivatives:

$$\frac{\partial}{\partial \theta} \log \pi(y | \theta) = \frac{y}{\theta} - \frac{n - y}{1 - \theta}, \quad \frac{\partial^2}{\partial \theta^2} \log \pi(y | \theta) = -\frac{y}{\theta^2} - \frac{n - y}{(1 - \theta)^2}.$$

Example 3.8 continued: compute Fisher information

Using $I_Y(\theta) = -\mathbb{E} \left[\frac{\partial^2}{\partial \theta^2} \log \pi(Y | \theta) \right]$:

$$I_Y(\theta) = \mathbb{E} \left[\frac{Y}{\theta^2} + \frac{n - Y}{(1 - \theta)^2} \right] = \frac{\mathbb{E}[Y]}{\theta^2} + \frac{n - \mathbb{E}[Y]}{(1 - \theta)^2}.$$

Since $\mathbb{E}[Y] = n\theta$ for $Y \sim \text{Bin}(n, \theta)$:

$$I_Y(\theta) = \frac{n\theta}{\theta^2} + \frac{n - n\theta}{(1 - \theta)^2} = \frac{n}{\theta} + \frac{n}{1 - \theta} = \frac{n}{\theta(1 - \theta)}.$$

Thus

$$\pi(\theta) \propto \sqrt{I_Y(\theta)} \propto \theta^{-1/2}(1 - \theta)^{-1/2},$$

i.e.

$$\theta \sim \text{Beta}\left(\frac{1}{2}, \frac{1}{2}\right).$$

Example 3.9: Normal mean \Rightarrow improper prior

Let

$$Y \mid \mu \sim \mathcal{N}(\mu, \sigma^2), \quad \sigma > 0 \text{ known}, \quad \mu \in \mathbb{R}.$$

One can show

$$I_Y(\mu) = \frac{1}{\sigma^2}.$$

Therefore Jeffreys prior:

$$\pi(\mu) \propto \sqrt{I_Y(\mu)} = \frac{1}{\sigma} \propto 1.$$

Example 3.9: Normal mean \Rightarrow improper prior

Let

$$Y \mid \mu \sim \mathcal{N}(\mu, \sigma^2), \quad \sigma > 0 \text{ known}, \quad \mu \in \mathbb{R}.$$

One can show

$$I_Y(\mu) = \frac{1}{\sigma^2}.$$

Therefore Jeffreys prior:

$$\pi(\mu) \propto \sqrt{I_Y(\mu)} = \frac{1}{\sigma} \propto 1.$$

But on \mathbb{R} ,

$$\int_{-\infty}^{\infty} \pi(\mu) d\mu = \infty,$$

so $\pi(\mu) \propto 1$ is **improper**.

Improper priors: what and why?

Definition (improper prior). A prior $\pi(\theta)$ on Θ is improper if

$$\int_{\Theta} \pi(\theta) d\theta = \infty.$$

- ▶ Improper priors are commonly used to express “very weak information”.
- ▶ They are acceptable **if the posterior is proper** (normalisable):

$$\pi(\theta | y) \propto \pi(y | \theta) \pi(\theta) \quad \text{and} \quad \int_{\Theta} \pi(\theta | y) d\theta < \infty.$$

- ▶ Always check posterior propriety when using improper priors.

Frequentist vs Bayesian viewpoint (conceptual)

- ▶ **Frequentist:** there is a true (fixed) parameter θ^* generating the data.
- ▶ **Bayesian:** the parameter θ is modelled as random with prior $\pi(\theta)$.

Frequentist vs Bayesian viewpoint (conceptual)

- ▶ **Frequentist:** there is a true (fixed) parameter θ^* generating the data.
- ▶ **Bayesian:** the parameter θ is modelled as random with prior $\pi(\theta)$.

A useful bridge:

- ▶ Treat Bayesian inference as a method to produce estimators/intervals.
- ▶ Then analyse their **frequentist properties** under data generated at θ^* :
 - ▶ bias, variance, MSE,
 - ▶ coverage of credible intervals.

Example 3.10: conjugate normal model

Model + prior:

$$X_1, \dots, X_n \mid \theta \stackrel{i.i.d.}{\sim} \mathcal{N}(\theta, 1), \quad \theta \sim \mathcal{N}(0, 1).$$

Posterior (from conjugacy):

$$\theta \mid X \sim \mathcal{N}\left(\frac{n}{n+1} \bar{X}_n, \frac{1}{n+1}\right), \quad \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Posterior mean estimator:

$$\hat{\theta}_n := \mathbb{E}[\theta \mid X] = \frac{n}{n+1} \bar{X}_n.$$

Frequentist analysis: assume a true θ^*

Now assume (hypothetically)

$$X_1, \dots, X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\theta^*, 1),$$

with fixed θ^* .

Compute bias and variance of $\hat{\theta}_n = \frac{n}{n+1} \bar{X}_n$:

$$\mathbb{E}[\hat{\theta}_n] = \frac{n}{n+1} \mathbb{E}[\bar{X}_n] = \frac{n}{n+1} \theta^* \quad \Rightarrow \quad \text{Bias}(\hat{\theta}_n) = \mathbb{E}[\hat{\theta}_n] - \theta^* = -\frac{1}{n+1} \theta^*.$$

$$\text{Var}(\hat{\theta}_n) = \left(\frac{n}{n+1} \right)^2 \text{Var}(\bar{X}_n) = \left(\frac{n}{n+1} \right)^2 \frac{1}{n} = \frac{n}{(n+1)^2}.$$

Compare to MLE and asymptotic agreement

For this model, the MLE is \bar{X}_n with

$$\text{Bias}(\bar{X}_n) = 0, \quad \text{Var}(\bar{X}_n) = \frac{1}{n}.$$

Difference:

$$\bar{X}_n - \hat{\theta}_n = \bar{X}_n - \frac{n}{n+1}\bar{X}_n = \frac{1}{n+1}\bar{X}_n \xrightarrow{P} 0,$$

since $\bar{X}_n \xrightarrow{P} \theta^*$ and $(n+1)^{-1} \rightarrow 0$.

Compare to MLE and asymptotic agreement

For this model, the MLE is \bar{X}_n with

$$\text{Bias}(\bar{X}_n) = 0, \quad \text{Var}(\bar{X}_n) = \frac{1}{n}.$$

Difference:

$$\bar{X}_n - \hat{\theta}_n = \bar{X}_n - \frac{n}{n+1}\bar{X}_n = \frac{1}{n+1}\bar{X}_n \xrightarrow{P} 0,$$

since $\bar{X}_n \xrightarrow{P} \theta^*$ and $(n+1)^{-1} \rightarrow 0$.

So posterior mean and MLE **agree asymptotically**.

Credible interval and frequentist coverage (idea)

A $(1 - \alpha)$ credible interval from the posterior is

$$C_n(X) = \hat{\theta}_n \pm \frac{1}{\sqrt{n+1}} \Phi^{-1}(1 - \alpha/2),$$

where Φ^{-1} is the standard Normal quantile function.

Frequentist coverage asks:

$$\mathbb{P}_{\theta^*}(\theta^* \in C_n(X)), \quad \text{under } X_i \stackrel{i.i.d.}{\sim} \mathcal{N}(\theta^*, 1).$$

Using asymptotic normality and Slutsky-type arguments, one obtains

$$\mathbb{P}_{\theta^*}(\theta^* \in C_n(X)) \longrightarrow 1 - \alpha \quad \text{as } n \rightarrow \infty.$$

So (in this model) Bayesian credible intervals are asymptotically valid confidence intervals.

Theorem 3.2: Bernstein–von Mises (statement)

Let $X_1, \dots, X_n \stackrel{i.i.d.}{\sim} P_{\theta^*}$ with $\theta^* \in \Theta \subseteq \mathbb{R}$. Let $\hat{\theta}_{\text{MLE}}$ be the MLE and $I(\theta^*)$ the Fisher information.

Under mild regularity conditions and a prior $\pi(\theta)$ that is **positive near** $\hat{\theta}_{\text{MLE}}$, the posterior is asymptotically normal:

$$\theta | X \approx \mathcal{N}\left(\hat{\theta}_{\text{MLE}}, (nI(\theta^*))^{-1}\right), \quad n \rightarrow \infty,$$

more precisely (in total variation distance):

$$\frac{1}{2} \int |\pi(\theta | X) - \hat{\varphi}_n(\theta)| \, d\theta \xrightarrow{a.s.} 0,$$

where $\hat{\varphi}_n$ is the density of $\mathcal{N}(\hat{\theta}_{\text{MLE}}, (nI(\theta^*))^{-1})$.

Consequence: asymptotic credible interval matches CI

When $\theta \in \mathbb{R}$, BvM implies an approximate $(1 - \alpha)$ credible interval:

$$C_n(X) = \hat{\theta}_{\text{MLE}} \pm \frac{1}{\sqrt{n I(\hat{\theta}_{\text{MLE}})}} \Phi^{-1}(1 - \alpha/2).$$

- ▶ This matches the usual **asymptotic confidence interval** from MLE theory.
- ▶ Hence coverage satisfies

$$\mathbb{P}_{\theta^*}(\theta^* \in C_n(X)) \rightarrow 1 - \alpha.$$

Why hierarchical models?

In many problems:

- ▶ We have **multiple parameters** that relate to each other.
- ▶ Prior parameters may themselves be uncertain.

Why hierarchical models?

In many problems:

- ▶ We have **multiple parameters** that relate to each other.
- ▶ Prior parameters may themselves be uncertain.

A **hierarchical model** builds layers:

hyperparameters → parameters → data.

Benefits:

- ▶ more flexible modelling of uncertainty,
- ▶ reduced sensitivity to fixed prior hyperparameters,
- ▶ enables structured inference (e.g. Gibbs sampling).

Example 3.11: Exponential likelihood with hyperprior

Recall (Example 3.4): data $y = (y_1, \dots, y_n)$ with

$$Y_i \mid \lambda \stackrel{i.i.d.}{\sim} \text{Exp}(\lambda), \quad \lambda > 0.$$

Previously we set a fixed prior $\lambda \sim \text{Exp}(\gamma)$ and obtained

$$\lambda \mid y \sim \text{Gamma}\left(n + 1, \sum_{i=1}^n y_i + \gamma\right).$$

Example 3.11: Exponential likelihood with hyperprior

Recall (Example 3.4): data $y = (y_1, \dots, y_n)$ with

$$Y_i \mid \lambda \stackrel{i.i.d.}{\sim} \text{Exp}(\lambda), \quad \lambda > 0.$$

Previously we set a fixed prior $\lambda \sim \text{Exp}(\gamma)$ and obtained

$$\lambda \mid y \sim \text{Gamma}\left(n + 1, \sum_{i=1}^n y_i + \gamma\right).$$

Now treat γ as unknown by putting a **hyperprior**:

$$\gamma \sim \text{Exp}(\nu).$$

Hierarchy diagram and joint posterior

Hierarchy:

$$Y_1, \dots, Y_n \mid \lambda \sim \text{Exp}(\lambda) \quad (\text{likelihood})$$

$$\lambda \mid \gamma \sim \text{Exp}(\gamma) \quad (\text{prior})$$

$$\gamma \sim \text{Exp}(\nu) \quad (\text{hyperprior})$$

Diagram: $\gamma \rightarrow \lambda \rightarrow \{Y_i\}_{i=1}^n$.

Joint posterior:

$$\pi(\lambda, \gamma \mid y) \propto \pi(y \mid \lambda) \pi(\lambda \mid \gamma) \pi(\gamma).$$

Up to proportionality (collecting kernel terms):

$$\pi(\lambda, \gamma \mid y) \propto \lambda^n \gamma \exp\left(-\lambda\left(\sum_{i=1}^n y_i + \gamma\right)\right) \exp(-\nu\gamma), \quad \lambda, \gamma > 0.$$

Conditional posteriors (key for Gibbs sampling)

Use the identity

$$\pi(\lambda, \gamma | y) = \pi(\lambda | y, \gamma) \pi(\gamma | y) = \pi(\gamma | y, \lambda) \pi(\lambda | y).$$

To get $\pi(\lambda | y, \gamma)$, keep only terms depending on λ :

$$\pi(\lambda | y, \gamma) \propto \lambda^n \exp\left(-\lambda\left(\sum_{i=1}^n y_i + \gamma\right)\right),$$

so

$$\lambda | y, \gamma \sim \text{Gamma}\left(n + 1, \sum_{i=1}^n y_i + \gamma\right).$$

Similarly, keep only terms depending on γ :

$$\pi(\gamma | y, \lambda) \propto \gamma \exp\left(-(\lambda + \nu)\gamma\right),$$

so

$$\gamma | y, \lambda \sim \text{Gamma}(2, \lambda + \nu).$$

Why these conditionals matter

- ▶ The conditional posteriors have **standard forms** (Gamma distributions).
- ▶ This makes simulation-based inference straightforward:
 - ▶ sample $\lambda^{(t+1)} \sim \pi(\lambda | y, \gamma^{(t)})$,
 - ▶ sample $\gamma^{(t+1)} \sim \pi(\gamma | y, \lambda^{(t+1)})$,

which is exactly the structure used by **Gibbs sampling** (an MCMC method).

Summary

- ▶ Uniform priors are **not** invariant: “non-informative” depends on parametrisation.
- ▶ Jeffreys prior uses Fisher information:

$$\pi(\theta) \propto \sqrt{I_Y(\theta)},$$

and is invariant to smooth 1–1 reparametrisations.

- ▶ Examples:
 - ▶ Binomial \Rightarrow Beta($\frac{1}{2}, \frac{1}{2}$),
 - ▶ Normal mean $\Rightarrow \pi(\mu) \propto 1$ (improper).
- ▶ Frequentist analysis can study bias/variance/coverage of Bayesian outputs.
- ▶ Hierarchical models add hyperpriors; conditional posteriors enable Gibbs sampling.