
Normal Likelihood, Normal Prior
Posterior for the Mean (Known Variance) + Conjugacy + Interpretation

Bayesian Inference and Computation (Lecture)
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Today

Today is algebra-heavy: we will derive a posterior distribution by hand.

We focus on a simplified but very common case:

Y1, . . . ,YN ∼ N (µ, σ2), µ unknown, σ2 known.

Why simplify?

Normal model appears everywhere.
Two-parameter case (µ, σ2) is doable but messier (worksheet / later).
This case isolates the key trick: collect terms + complete the square.
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Setup and goal

Data model

Y1, . . . ,YN | µ i.i.d.∼ N (µ, σ2), σ > 0 known.

Let y = (y1, . . . , yN) denote the observed data.

Goal

Use Bayes’ theorem:
π(µ | y) ∝ π(y | µ)π(µ).

We will work up to proportionality (ignore constants not involving µ).
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Example 3.5: Normal prior on µ

Prior

µ ∼ N (µ0, σ
2
0).

µ0 = prior mean (best guess before seeing data).

σ2
0 = prior variance (how uncertain you are).

Vague prior: choose σ2
0 very large (e.g. 106).
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Likelihood function (Example 3.5)

Because the observations are independent,

π(y | µ) =
N∏
i=1

1√
2πσ2

exp

{
−(yi − µ)2

2σ2

}

= (2πσ2)−N/2 exp

{
−

N∑
i=1

(yi − µ)2

2σ2

}
.

Up to proportionality in µ

Drop the leading constant (2πσ2)−N/2:

π(y | µ) ∝ exp

{
−

N∑
i=1

(yi − µ)2

2σ2

}
.
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Prior density (Example 3.5)

π(µ) =
1√
2πσ2

0

exp

{
−(µ− µ0)

2

2σ2
0

}
∝ exp

{
−(µ− µ0)

2

2σ2
0

}
.

Bayes (up to proportionality)

π(µ | y) ∝ exp

{
−

N∑
i=1

(yi − µ)2

2σ2

}
exp

{
−(µ− µ0)

2

2σ2
0

}
.
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Posterior: expand the exponent and drop constants

Combine the exponents:

π(µ | y) ∝ exp

{
−

N∑
i=1

(yi − µ)2

2σ2
− (µ− µ0)

2

2σ2
0

}
.

Expand terms (grouping by µ):

−
N∑
i=1

(yi − µ)2

2σ2
− (µ− µ0)

2

2σ2
0

= −
N∑
i=1

y2i
2σ2︸ ︷︷ ︸

no µ

+ µ

(∑N
i=1 yi
σ2

)
︸ ︷︷ ︸

linear

− µ2

(
N

2σ2

)
︸ ︷︷ ︸
quadratic

− µ2

(
1

2σ2
0

)
+ µ

(
µ0

σ2
0

)
− µ2

0

2σ2
0︸︷︷︸

no µ

.

Drop constants

The first and last terms do not depend on µ, so they vanish into the proportionality constant.
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Arranging

After dropping constants,

π(µ | y) ∝ exp

{
−µ2

(
N

2σ2
+

1

2σ2
0

)
+ µ

(∑N
i=1 yi
σ2

+
µ0

σ2
0

)}
.

Define (as in the notes)

a =

(∑N
i=1 yi
σ2

+
µ0

σ2
0

)
, b2 =

(
N

σ2
+

1

σ2
0

)−1

=
σ2σ2

0

Nσ2
0 + σ2

.

Then

π(µ | y) ∝ exp

{
− µ2

2b2
+ µ a

}
.
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Complete the square

Consider the exponent:

− µ2

2b2
+ µa.

Complete the square:

− µ2

2b2
+ µa = − 1

2b2
(
µ− ab2

)2
+

a2b2

2
.

Drop the constant again

π(µ | y) ∝ exp

{
− 1

2b2
(
µ− ab2

)2}
.

This is the kernel of a Normal distribution.
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Posterior distribution (Example 3.5)

Therefore,
µ | Y ∼ N (µpost, b

2), where µpost := ab2.

Posterior mean (expanded)

µpost = ab2 =
σ2
0

∑N
i=1 yi + µ0σ

2

Nσ2
0 + σ2

=
Nσ2

0

Nσ2
0 + σ2︸ ︷︷ ︸

weight on ȳ

ȳ +
σ2

Nσ2
0 + σ2︸ ︷︷ ︸

weight on µ0

µ0, ȳ =
1

N

N∑
i=1

yi .

Posterior variance

b2 =

(
N

σ2
+

1

σ2
0

)−1

.
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Interpretation: precision-weighted averaging

Rewrite µpost using precisions:

µpost =
N
σ2

N
σ2 +

1
σ2
0

ȳ +

1
σ2
0

N
σ2 +

1
σ2
0

µ0.

Precision = inverse variance

Prior precision: 1/σ2
0.

Sample mean (MLE): µ̂MLE = ȳ and

ȳ ∼ N
(
µ,

σ2

N

)
⇒ precision =

N

σ2
.

Memory aid

1

b2
=

N

σ2
+

1

σ2
0

,

i.e. posterior precision = (MLE precision) + (prior precision).
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Sanity checks: limiting cases

Vague prior (σ2
0 → ∞):

µpost → ȳ , b2 → σ2

N
.

Very strong prior (σ2
0 → 0):

µpost → µ0, b2 → 0.

More data (N ↑):

b2 =

(
N

σ2
+

1

σ2
0

)−1

↓,

so uncertainty about µ shrinks as we observe more data.
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Credible intervals (equal-tailed, level 1− α)

Let α < 1/2. We want l , u ∈ R such that

π(µ < l | y) = π(µ > u | y) = α/2, ⇒ π(µ ∈ [l , u] | y) = 1− α.

Since µ | y ∼ N (µpost, b
2),

Z :=
µ− µpost

b
∼ N (0, 1).

Thus
u = µpost + bΦ−1(1− α/2), l = µpost − bΦ−1(1− α/2).

Credible interval

µpost ± bΦ−1(1− α/2)
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Large N link to confidence intervals

If N is large (or prior is vague), then µpost ≈ ȳ and b2 ≈ σ2/N, so the Bayesian credible
interval is approximately

ȳ ± σ√
N
Φ−1(1− α/2),

which matches the usual Normal-theory confidence interval (known σ).

But...

For small N or strong prior belief, credible and confidence intervals can differ substantially.
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Conjugate priors: the “cheat code” (with a warning)

Definition (Conjugate prior)

A prior π(θ) is conjugate for a likelihood π(y | θ) if the posterior π(θ | y) has the same
distributional form as the prior.

Here

Normal likelihood (known σ2) + Normal prior on µ =⇒ Normal posterior for µ.

Important warning

Conjugacy gives algebraic convenience, not correctness. Choose priors because they are
sensible for the application—not just because they make the maths tidy.
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Compute it in R: simulate + posterior parameters (Example 3.5)

set.seed(1)

N <- 30

sigma2 <- 1 # known variance

mu_true <- 5

# simulate data

y <- rnorm(N, mean = mu_true, sd = sqrt(sigma2))

# prior on mu: Normal(mu0, sigma0^2)

mu0 <- 0

sigma0 <- 1000

sigma0_2 <- sigma0^2

# Example 3.5 definitions

a <- sum(y)/sigma2 + mu0/sigma0_2

b2 <- 1 / (N/sigma2 + 1/sigma0_2)

mu_post <- a * b2

mu_post

b2
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Posterior distribution plot (conceptual code)

# grid for plotting posterior of mu

grid <- seq(4, 6, length.out = 400)

# posterior density: Normal(mu_post, b2)

post <- dnorm(grid, mean = mu_post, sd = sqrt(b2))

plot(grid, post, type="l",

main="Posterior for mu",

xlab="mu", ylab="density")

abline(v = mu_post, lty = 2)

Interpretation

This curve is your belief distribution for µ after seeing the data: not just a point estimate,
but a full distribution you can query.
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Credible interval (95%) in R

Equal-tailed credible interval

For α = 0.05,
[l , u] = µpost ± bΦ−1(1− α/2), b =

√
b2.

alpha <- 0.05

b <- sqrt(b2)

l <- mu_post - b * qnorm(1 - alpha/2)

u <- mu_post + b * qnorm(1 - alpha/2)

c(l, u)

You can also compute probabilities like Pr(µ > 5 | y) via pnorm.
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History break: David Blackwell

Who?

David Harold Blackwell (1919–2010):

major contributions to Bayesian statistics, information theory, and game theory,

known for work on decision theory and games with partial information.

Why mention him here?

Bayesian inference is not just “a method”:

it links belief updating to decision making under uncertainty.
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Blackwell: the decision-theory connection

Bayes gives a posterior; decisions need a loss

Posterior π(θ | y) tells you uncertainty about θ.

To choose an action a, introduce a loss L(a, θ).

Bayesian decision rule: choose a minimizing posterior expected loss

a⋆ ∈ argmin
a

E[L(a, θ) | y ] .

This is the bridge between inference (what you believe) and action (what you do).
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Wrap-up

Main result (Example 3.5)

If Yi | µ ∼ N (µ, σ2) with known σ2 and µ ∼ N (µ0, σ
2
0), then

µ | y ∼ N (µpost, b
2), b2 =

(
N

σ2
+

1

σ2
0

)−1

, µpost =
N
σ2

N
σ2 +

1
σ2
0

ȳ +

1
σ2
0

N
σ2 +

1
σ2
0

µ0.

What to focus on

Posterior mean is a precision-weighted average of sample mean and prior mean.

Posterior variance shrinks as information increases.

Conjugacy is convenient, but prior choice should be principled.
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Questions?

Thanks everyone!
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