Normal Likelihood, Normal Prior

Posterior for the Mean (Known Variance) 4+ Conjugacy + Interpretation
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o Today is algebra-heavy: we will derive a posterior distribution by hand.

@ We focus on a simplified but very common case:
Yi,..., Yn ~ N(i,02), p unknown, o known.

@ Why simplify?
e Normal model appears everywhere.
o Two-parameter case (i, 02) is doable but messier (worksheet / later).
e This case isolates the key trick: collect terms + complete the square.
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Setup and goal

Data model

Yi, .. Yu lp R N, o), o > 0 known.

Let y = (y1,...,yn) denote the observed data.

Use Bayes' theorem:

m(p|y) o< m(y | ) m(p).

e We will work up to proportionality (ignore constants not involving ).
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Example 3.5: Normal prior on p

p ~ N(po, 93)-

@ Lo = prior mean (best guess before seeing data).
@ 03 = prior variance (how uncertain you are).

o Vague prior: choose o3 very large (e.g. 10°).
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Likelihood function (Example 3.5)

Because the observations are independent,

m(y | 1) —I]I;V[l\/;iem{ (}/2?‘2“)2}

Up to proportionality in x

Drop the leading constant (2rc2)~N/2:

N o
mly | p) o exp{—Z%}-
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Prior density (Example 3.5)

N
(vi — p)? (1 — po)?
m(ply) o eXP{—;T}eXP{—TgO}-
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Posterior: expand the exponent and drop constants

Combine the exponents:

N 2 . 2
m(uly) o exp{z(y'%zu) -l QUZO) }
i=1 0

Expand terms (grouping by p):
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Arranging

After dropping constants,

N 1 SNiyi  wo
2 —1Yi
m(p|y) o« exp{—,u <2U2+208)+u< ’02 —i—g—g )
Define (as in the notes)

o (ZEyi o oo (N1 o
g2 03]’ o2 o3 No2 + o2’

Then
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Complete the square

Consider the exponent:

Complete the square:

Drop the constant again

Gl = ot )

This is the kernel of a Normal distribution.
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Posterior distribution (Example 3.5)

Therefore,
1| Y ~N(pposs, b%), where 1050 := ab®.

Posterior mean (expanded)

2N 2 N
> 05D i—1 Vit Hoo Nog  _ o2 _ 1
Hpost = ab”™ = 2 2 = 2 5 Y 2 5 Mo, y:_E Yi-
Nog + o Nog + o Nog + o N P
weight on y Weigh?ron 1o

Posterior variance

| \
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Interpretation: precision-weighted averaging

Rewrite fipost USING precisions:

Hpost =

+ =

OQN‘H
+ oqro"_‘

W=
<
+

W=

Precision = inverse variance

o Prior precision: 1/03.
e Sample mean (MLE): fim g = ¥ and
o2

N
y NN(M, N) =  precision = ok

Memory aid
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Sanity checks: limiting cases

e Vague prior (02 — o0):

Q

Mpost_>_)7a b2_>7'
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Sanity checks: limiting cases

e Vague prior (02 — o0):
2
o
—y b? — —.
Hpost Y, N
e Very strong prior (62 — 0):

Upost — [0, b2 — 0.
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Sanity checks: limiting cases

e Vague prior (02 — o0):

2 0
y b —.
Upost = Y, — N
e Very strong prior (62 — 0):
Upost — [0, b2 — 0.
e More data (N 1):
N1\t
PP=(=+=
(02 + J%) v

so uncertainty about p shrinks as we observe more data.
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Credible intervals (equal-tailed, level 1 — )

Let & < 1/2. We want /,u € R such that
mu<l|y)=n(p>uly)=a/2, = w(pelu|y)=1-ca.

Since p1 | y ~ N (post, b?),

Z = % ~ N(0,1).

Thus
U= pipost +bO X1 —a/2), | = pipost — bO 1~ /2).

Credible interval

fpost £ bO (1 - a/2)
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Large N link to confidence intervals

If N is large (or prior is vague), then 1,0t = ¥ and b? ~ 02 /N, so the Bayesian credible
interval is approximately

_ g -1
y+ ﬁfb (1-a/2),

which matches the usual Normal-theory confidence interval (known o).

For small N or strong prior belief, credible and confidence intervals can differ substantially.
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Conjugate priors: the “cheat code” (with a warning)

Definition (Conjugate prior)
A prior m() is conjugate for a likelihood 7(y | 0) if the posterior (6 | y) has the same
distributional form as the prior.

Normal likelihood (known ) + Normal prior on y == Normal posterior for .

Important warning
Conjugacy gives algebraic convenience, not correctness. Choose priors because they are
sensible for the application—not just because they make the maths tidy.
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Compute it in R: simulate + posterior parameters (Example 3.5)

set.seed(1)

N <- 30
sigma2 <- 1 # known wvariance
mu_true <- 5

# simulate data
y <- rnorm(N, mean = mu_true, sd = sqrt(sigma2))

# prior on mu: Normal (mu0, sigma0~2)
mul0 <- 0

sigmaO <- 1000

sigma0_2 <- sigma0~2

# Example 3.5 definitions
a <- sum(y)/sigma2 + muO/sigmaO_2
b2 <- 1 / (N/sigma2 + 1/sigma0_2)
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Posterior distribution plot (conceptual code)

# grid for plotting posterior of mu
grid <- seq(4, 6, length.out = 400)

# posterior density: Normal(mu_post, b2)
post <- dnorm(grid, mean = mu_post, sd = sqrt(b2))

plot(grid, post, type="1",
main="Posterior for mu",
xlab="mu", ylab="density")

abline(v = mu_post, lty = 2)

Interpretation

This curve is your belief distribution for . after seeing the data: not just a point estimate,
but a full distribution you can query.
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Credible interval (95%) in R

Equal-tailed credible interval

For e = 0.05,
[lvu]:Mpostibq)_l(l—a/z), b:\/ﬁ.

alpha <- 0.05
b <- sqrt(b2)

1 <- mu_post - b * gnorm(1 - alpha/2)
u <- mu_post + b * gnorm(l - alpha/2)

c(l, w

@ You can also compute probabilities like Pr(x > 5| y) via pnorm.
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History break: David Blackwell

David Harold Blackwell (1919-2010):
@ major contributions to Bayesian statistics, information theory, and game theory,

@ known for work on decision theory and games with partial information.

A\

Why mention him here?

Bayesian inference is not just “a method":

@ it links belief updating to decision making under uncertainty.
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Blackwell: the decision-theory connection

Bayes gives a posterior; decisions need a loss

@ Posterior 7(6 | y) tells you uncertainty about 6.
@ To choose an action a, introduce a loss L(a, 8).

@ Bayesian decision rule: choose a minimizing posterior expected loss

a* € argminE[L(a,0) | y].
a

@ This is the bridge between inference (what you believe) and action (what you do).
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Main result (Example 3.5)
If Yi | u~ N(u,o?) with known o2 and p ~ N (g, 03), then

1
N1\t ¥ . R
p |y ~ N(ppost, b°), b2:<02+ 2) » Hpost = iV T W, 1 Ho-
% 2Tz 213

What to focus on

@ Posterior mean is a precision-weighted average of sample mean and prior mean.

@ Posterior variance shrinks as information increases.

e Conjugacy is convenient, but prior choice should be principled.
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Thanks everyone!
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