

Normal Likelihood, Normal Prior

Posterior for the Mean (Known Variance) + Conjugacy + Interpretation

Bayesian Inference and Computation (Lecture)

- Today is algebra-heavy: we will derive a posterior distribution by hand.
- We focus on a simplified but very common case:

$$Y_1, \dots, Y_N \sim \mathcal{N}(\mu, \sigma^2), \quad \mu \text{ unknown, } \sigma^2 \text{ known.}$$

- Why simplify?
 - Normal model appears everywhere.
 - Two-parameter case (μ, σ^2) is doable but messier (worksheet / later).
 - This case isolates the key trick: **collect terms + complete the square.**

Setup and goal

Data model

$$Y_1, \dots, Y_N \mid \mu \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2), \quad \sigma > 0 \text{ known.}$$

Let $y = (y_1, \dots, y_N)$ denote the observed data.

Goal

Use Bayes' theorem:

$$\pi(\mu \mid y) \propto \pi(y \mid \mu) \pi(\mu).$$

- We will work *up to proportionality* (ignore constants not involving μ).

Example 3.5: Normal prior on μ

Prior

$$\mu \sim \mathcal{N}(\mu_0, \sigma_0^2).$$

- μ_0 = prior mean (best guess before seeing data).
- σ_0^2 = prior variance (how uncertain you are).
- Vague prior: choose σ_0^2 very large (e.g. 10^6).

Likelihood function (Example 3.5)

Because the observations are independent,

$$\begin{aligned}\pi(y \mid \mu) &= \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y_i - \mu)^2}{2\sigma^2}\right\} \\ &= (2\pi\sigma^2)^{-N/2} \exp\left\{-\sum_{i=1}^N \frac{(y_i - \mu)^2}{2\sigma^2}\right\}.\end{aligned}$$

Up to proportionality in μ

Drop the leading constant $(2\pi\sigma^2)^{-N/2}$:

$$\pi(y \mid \mu) \propto \exp\left\{-\sum_{i=1}^N \frac{(y_i - \mu)^2}{2\sigma^2}\right\}.$$

Prior density (Example 3.5)

$$\pi(\mu) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left\{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right\} \propto \exp\left\{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right\}.$$

Bayes (up to proportionality)

$$\pi(\mu \mid y) \propto \exp\left\{-\sum_{i=1}^N \frac{(y_i - \mu)^2}{2\sigma^2}\right\} \exp\left\{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right\}.$$

Posterior: expand the exponent and drop constants

Combine the exponents:

$$\pi(\mu | y) \propto \exp \left\{ - \sum_{i=1}^N \frac{(y_i - \mu)^2}{2\sigma^2} - \frac{(\mu - \mu_0)^2}{2\sigma_0^2} \right\}.$$

Expand terms (grouping by μ):

$$\begin{aligned} & - \sum_{i=1}^N \frac{(y_i - \mu)^2}{2\sigma^2} - \frac{(\mu - \mu_0)^2}{2\sigma_0^2} \\ &= - \underbrace{\sum_{i=1}^N \frac{y_i^2}{2\sigma^2}}_{\text{no } \mu} + \mu \underbrace{\left(\frac{\sum_{i=1}^N y_i}{\sigma^2} \right)}_{\text{linear}} - \mu^2 \underbrace{\left(\frac{N}{2\sigma^2} \right)}_{\text{quadratic}} - \mu^2 \left(\frac{1}{2\sigma_0^2} \right) + \mu \left(\frac{\mu_0}{\sigma_0^2} \right) - \underbrace{\frac{\mu_0^2}{2\sigma_0^2}}_{\text{no } \mu}. \end{aligned}$$

Drop constants

The first and last terms do not depend on μ , so they vanish into the proportionality constant.

Arranging

After dropping constants,

$$\pi(\mu | y) \propto \exp \left\{ -\mu^2 \left(\frac{N}{2\sigma^2} + \frac{1}{2\sigma_0^2} \right) + \mu \left(\frac{\sum_{i=1}^N y_i}{\sigma^2} + \frac{\mu_0}{\sigma_0^2} \right) \right\}.$$

Define (as in the notes)

$$a = \left(\frac{\sum_{i=1}^N y_i}{\sigma^2} + \frac{\mu_0}{\sigma_0^2} \right), \quad b^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \right)^{-1} = \frac{\sigma^2 \sigma_0^2}{N \sigma_0^2 + \sigma^2}.$$

Then

$$\pi(\mu | y) \propto \exp \left\{ -\frac{\mu^2}{2b^2} + \mu a \right\}.$$

Complete the square

Consider the exponent:

$$-\frac{\mu^2}{2b^2} + \mu a.$$

Complete the square:

$$-\frac{\mu^2}{2b^2} + \mu a = -\frac{1}{2b^2} (\mu - ab^2)^2 + \frac{a^2 b^2}{2}.$$

Drop the constant again

$$\pi(\mu | y) \propto \exp\left\{-\frac{1}{2b^2} (\mu - ab^2)^2\right\}.$$

This is the kernel of a Normal distribution.

Posterior distribution (Example 3.5)

Therefore,

$$\mu \mid Y \sim \mathcal{N}(\mu_{\text{post}}, b^2), \quad \text{where } \mu_{\text{post}} := ab^2.$$

Posterior mean (expanded)

$$\mu_{\text{post}} = ab^2 = \frac{\sigma_0^2 \sum_{i=1}^N y_i + \mu_0 \sigma^2}{N\sigma_0^2 + \sigma^2} = \underbrace{\frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{y}}_{\text{weight on } \bar{y}} + \underbrace{\frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0}_{\text{weight on } \mu_0}, \quad \bar{y} = \frac{1}{N} \sum_{i=1}^N y_i.$$

Posterior variance

$$b^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \right)^{-1}.$$

Interpretation: precision-weighted averaging

Rewrite μ_{post} using precisions:

$$\mu_{\text{post}} = \frac{\frac{N}{\sigma^2}}{\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}} \bar{y} + \frac{\frac{1}{\sigma_0^2}}{\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}} \mu_0.$$

Precision = inverse variance

- Prior precision: $1/\sigma_0^2$.
- Sample mean (MLE): $\hat{\mu}_{\text{MLE}} = \bar{y}$ and

$$\bar{y} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{N}\right) \Rightarrow \text{precision} = \frac{N}{\sigma^2}.$$

Memory aid

$$\frac{1}{b^2} = \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2},$$

Sanity checks: limiting cases

- **Vague prior** ($\sigma_0^2 \rightarrow \infty$):

$$\mu_{\text{post}} \rightarrow \bar{y}, \quad b^2 \rightarrow \frac{\sigma^2}{N}.$$

Sanity checks: limiting cases

- **Vague prior** ($\sigma_0^2 \rightarrow \infty$):

$$\mu_{\text{post}} \rightarrow \bar{y}, \quad b^2 \rightarrow \frac{\sigma^2}{N}.$$

- **Very strong prior** ($\sigma_0^2 \rightarrow 0$):

$$\mu_{\text{post}} \rightarrow \mu_0, \quad b^2 \rightarrow 0.$$

Sanity checks: limiting cases

- **Vague prior** ($\sigma_0^2 \rightarrow \infty$):

$$\mu_{\text{post}} \rightarrow \bar{y}, \quad b^2 \rightarrow \frac{\sigma^2}{N}.$$

- **Very strong prior** ($\sigma_0^2 \rightarrow 0$):

$$\mu_{\text{post}} \rightarrow \mu_0, \quad b^2 \rightarrow 0.$$

- **More data** ($N \uparrow$):

$$b^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \right)^{-1} \downarrow,$$

so uncertainty about μ shrinks as we observe more data.

Credible intervals (equal-tailed, level $1 - \alpha$)

Let $\alpha < 1/2$. We want $l, u \in \mathbb{R}$ such that

$$\pi(\mu < l \mid y) = \pi(\mu > u \mid y) = \alpha/2, \quad \Rightarrow \quad \pi(\mu \in [l, u] \mid y) = 1 - \alpha.$$

Since $\mu \mid y \sim \mathcal{N}(\mu_{\text{post}}, b^2)$,

$$Z := \frac{\mu - \mu_{\text{post}}}{b} \sim \mathcal{N}(0, 1).$$

Thus

$$u = \mu_{\text{post}} + b \Phi^{-1}(1 - \alpha/2), \quad l = \mu_{\text{post}} - b \Phi^{-1}(1 - \alpha/2).$$

Credible interval

$$\mu_{\text{post}} \pm b \Phi^{-1}(1 - \alpha/2)$$

Large N link to confidence intervals

If N is large (or prior is vague), then $\mu_{\text{post}} \approx \bar{y}$ and $b^2 \approx \sigma^2/N$, so the Bayesian credible interval is approximately

$$\bar{y} \pm \frac{\sigma}{\sqrt{N}} \Phi^{-1}(1 - \alpha/2),$$

which matches the usual Normal-theory confidence interval (known σ).

But...

For small N or strong prior belief, credible and confidence intervals can differ substantially.

Conjugate priors: the “cheat code” (with a warning)

Definition (Conjugate prior)

A prior $\pi(\theta)$ is **conjugate** for a likelihood $\pi(y | \theta)$ if the posterior $\pi(\theta | y)$ has the **same distributional form** as the prior.

Here

Normal likelihood (known σ^2) + Normal prior on $\mu \implies$ Normal posterior for μ .

Important warning

Conjugacy gives algebraic convenience, not correctness. Choose priors because they are sensible for the application—not just because they make the maths tidy.

Compute it in R: simulate + posterior parameters (Example 3.5)

```
set.seed(1)

N <- 30
sigma2 <- 1           # known variance
mu_true <- 5

# simulate data
y <- rnorm(N, mean = mu_true, sd = sqrt(sigma2))

# prior on mu: Normal(mu0, sigma0^2)
mu0 <- 0
sigma0 <- 1000
sigma0_2 <- sigma0^2

# Example 3.5 definitions
a <- sum(y)/sigma2 + mu0/sigma0_2
b2 <- 1 / (N/sigma2 + 1/sigma0_2)
```

Posterior distribution plot (conceptual code)

```
# grid for plotting posterior of mu
grid <- seq(4, 6, length.out = 400)

# posterior density: Normal(mu_post, b2)
post <- dnorm(grid, mean = mu_post, sd = sqrt(b2))

plot(grid, post, type="l",
      main="Posterior for mu",
      xlab="mu", ylab="density")
abline(v = mu_post, lty = 2)
```

Interpretation

This curve is your **belief distribution** for μ after seeing the data: not just a point estimate, but a full distribution you can query.

Credible interval (95%) in R

Equal-tailed credible interval

For $\alpha = 0.05$,

$$[l, u] = \mu_{\text{post}} \pm b \Phi^{-1}(1 - \alpha/2), \quad b = \sqrt{b^2}.$$

```
alpha <- 0.05
b <- sqrt(b2)

l <- mu_post - b * qnorm(1 - alpha/2)
u <- mu_post + b * qnorm(1 - alpha/2)

c(l, u)
```

- You can also compute probabilities like $\Pr(\mu > 5 | y)$ via `pnorm`.

History break: David Blackwell

Who?

David Harold Blackwell (1919–2010):

- major contributions to Bayesian statistics, information theory, and game theory,
- known for work on decision theory and games with partial information.

Why mention him here?

Bayesian inference is not just “a method”:

- it links **belief updating** to **decision making** under uncertainty.

Bayes gives a posterior; decisions need a loss

- Posterior $\pi(\theta | y)$ tells you uncertainty about θ .
- To choose an action a , introduce a loss $L(a, \theta)$.
- Bayesian decision rule: choose a minimizing posterior expected loss

$$a^* \in \arg \min_a \mathbb{E}[L(a, \theta) | y].$$

- This is the bridge between inference (what you believe) and action (what you do).

Wrap-up

Main result (Example 3.5)

If $Y_i | \mu \sim \mathcal{N}(\mu, \sigma^2)$ with known σ^2 and $\mu \sim \mathcal{N}(\mu_0, \sigma_0^2)$, then

$$\mu | y \sim \mathcal{N}(\mu_{\text{post}}, b^2), \quad b^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \right)^{-1}, \quad \mu_{\text{post}} = \frac{\frac{N}{\sigma^2} \bar{y} + \frac{1}{\sigma_0^2} \mu_0}{\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}}.$$

What to focus on

- Posterior mean is a precision-weighted average of sample mean and prior mean.
- Posterior variance shrinks as information increases.
- Conjugacy is convenient, but prior choice should be principled.

Questions?

Thanks everyone!