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Warm-up: recognise common distributions quickly

In Bayesian inference we constantly meet standard probability models. You should be able to
recognise their functional form and support.

Typical task

Given a density / mass function (possibly up to a constant), identify:

the distribution name;

its parameters;

its support (allowed values of x);

whether it is a density (continuous) or pmf (discrete).
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Mini reference table (you should know these)

Name Notation Form (up to constant) Support

Normal X ∼ N (µ, σ2) exp
(
− (x−µ)2

2σ2

)
x ∈ R

Beta X ∼ Beta(α, β) xα−1(1− x)β−1 x ∈ (0, 1)

Gamma X ∼ Gamma(α, β) xα−1e−βx x ∈ (0,∞)

Poisson X ∼ Pois(λ) λxe−λ/x! x ∈ {0, 1, 2, . . . }

Binomial X ∼ Bin(n, p)
(
n
x

)
px(1− p)n−x x ∈ {0, . . . , n}

Exam habit

Always state support clearly (e.g. x ∈ (0, 1) for Beta). It prevents many mistakes.
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What do we get at the end of Bayesian inference?

The output of Bayesian inference is the posterior distribution:

π(θ | y).

It represents our uncertainty about θ given data y .

It contains all information we can extract from the data under the model.

Key Bayesian idea

Once we have π(θ | y), any posterior probability is just an integral:

P(θ ∈ A | y) =

∫
A
π(θ | y) dθ.
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Posterior probabilities answer concrete questions

Examples of posterior questions:

“What is P(0 < θ < 1 | y)?”
“What is P(|θ| ≤ 2 | y)?”
“What is P(θ ≥ 0 | y)?”

In principle

If you know π(θ | y) exactly, then all such questions are straightforward.

P(θ ∈ A | y) =
∫
A
π(θ | y) dθ.
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But in practice: we often only know posteriors “up to a constant”

In many models,
π(θ | y) ∝ π(y | θ)π(θ).

The symbol ∝ means “proportional to”.

There is a normalising constant Z such that

π(θ | y) = 1

Z
π(y | θ)π(θ), Z =

∫
π(y | θ)π(θ) dθ.

The difficulty

Computing Z exactly is often hard, because it requires a potentially complicated integral.
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Does “up to a constant” make the posterior useless? No.

Even with unnormalised posterior we can still do Bayesian inference.

High-level idea (sampling)

There are methods (especially later in the course) that can produce samples

θ(1), . . . , θ(M) ∼ π(θ | y)

without knowing the normalising constant Z .

Once we can sample from π(θ | y), we can approximate integrals numerically.
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Approximating posterior probabilities by Monte Carlo

Suppose we want

P(θ ∈ A | y) =
∫
A
π(θ | y) dθ.

If we have samples θ(1), . . . , θ(M) ∼ π(θ | y), then:

P(θ ∈ A | y) ≈ 1

M

M∑
m=1

1
(
θ(m) ∈ A

)
.

Interpretation

This is simply “count how many samples fall into A”.

Key message

Posterior distributions are powerful even when known only up to a constant.
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Why summarise a posterior?

A posterior distribution is a rich object, but it can be difficult to report directly.

Common goals:

Provide a single best guess (point estimate).

Provide a measure of uncertainty (interval estimate).

Make results more interpretable to others.
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Point estimate 1: the posterior mean

A natural Bayesian point estimate is the posterior mean:

θ̂mean = E(θ | y) =

∫
θ π(θ | y) dθ.

This is a conditional expectation.

It is a weighted average of θ, where the weights come from the posterior.

Practical note

To compute E(θ | y) exactly, you need the normalised posterior. In complex models, we
approximate it using posterior samples.
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Point estimate 2: the posterior mode (MAP)

Another popular point estimate is the posterior mode:

θ̂MAP = argmax
θ

π(θ | y).

This is also called the maximum a posteriori (MAP) estimate.

Key advantage

MAP does not require the normalising constant.

Bayesian Inference & Computation (4BIC) Reporting Bayesian Conclusions January 29, 2026 12 / 31



MAP intuition: scaling does not change the maximiser

If a function is multiplied by a positive constant, its maximiser does not change.

Example:
f (x) = −(x − 1)2 ⇒ argmax

x
f (x) = 1.

Now scale it by 1000:

g(x) = 1000 f (x) ⇒ argmax
x

g(x) = 1.

Conclusion

MAP can be computed from an unnormalised posterior.
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MAP and MLE: connection via a “flat” prior

Recall:
π(θ | y) ∝ π(y | θ)π(θ).

If we choose a uniform / non-informative prior:

π(θ) ∝ 1,

then
θ̂MAP = argmax

θ
π(y | θ)π(θ) = argmax

θ
π(y | θ) = θ̂MLE.

Takeaway

MLE is a special case of MAP under a flat prior.
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Example: Beta posterior (binomial model)

Suppose after observing data, the posterior becomes

θ | y ∼ Beta(α, β).

Then:

E(θ | y) = α

α+ β
, mode(θ | y) = α− 1

α+ β − 2
(α, β > 1).

Interpretation

Posterior mean gives an “average” estimate.

Posterior mode gives the “most probable” value (MAP).
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Concrete numbers from the earlier “bot probability” example

From the previous example in the notes:

θ | y ∼ Beta(4, 198).

Posterior mean:

E(θ | y) = 4

4 + 198
=

4

202
.

Posterior mode (since 4, 198 > 1):

θ̂MAP =
4− 1

4 + 198− 2
=

3

200
.

Message

Point estimates summarise a posterior with a single number, but we still need uncertainty!
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Beyond point estimates: quantify uncertainty

In frequentist statistics, uncertainty is often reported using confidence intervals.

In Bayesian inference, the analogous concept is the credible interval.

Goal

Find an interval [L,U] such that

P(L ≤ θ ≤ U | y) = 1− α.
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Definition: credible interval at level 1− α

A credible interval is any interval [L,U] satisfying:∫ U

L
π(θ | y) dθ = 1− α.

Important

This definition does not uniquely specify L and U. There can be many different intervals
containing probability 1− α.
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Visual intuition: many intervals can contain 95% probability

θ

π(θ | y)

L UL′ U ′

same probability mass

Key point

There are infinitely many ways to pick [L,U] so that the area under the posterior is 1− α.
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Most common choice: equal-tailed credible interval

A standard default is the equal-tailed interval, defined by:

P(θ ≤ L | y) = α

2
, P(θ ≥ U | y) = α

2
.

Equivalently:

L = F−1
θ|y

(α
2

)
, U = F−1

θ|y

(
1− α

2

)
,

where Fθ|y is the posterior CDF.

Interpretation

You “split” the remaining probability α equally into the two tails.

Bayesian Inference & Computation (4BIC) Reporting Bayesian Conclusions January 29, 2026 20 / 31



Why Bayesian credible intervals feel more intuitive

In Bayesian inference:

θ is treated as a random variable.

the interval [L,U] is fixed once you observe the data y .

Interpretation

A (1− α) credible interval means:

P(θ ∈ [L,U] | y) = 1− α.

In words:

“Given the data, there is a 100(1− α)% probability that θ lies in [L,U].”
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Contrast with confidence intervals (frequentist)

A frequentist (1− α) confidence interval has a different meaning:

θ is treated as a fixed constant.

the interval endpoints (L,U) are random (they depend on random data).

Frequentist interpretation (requires repetition)

Over repeated sampling (repeating the experiment many times), the random interval contains
the true fixed θ in (1− α) fraction of repetitions.

Bayesian interpretation (no repetition needed)

Credible intervals directly describe probability of θ given your observed data.
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Example: 95% credible interval for Beta posterior

Continuing the earlier example:
θ | y ∼ Beta(4, 198).

A 95% equal-tailed credible interval is:[
F−1(0.025) , F−1(0.975)

]
.

In R (built-in quantiles for Beta)

qbeta(c(0.025, 0.975), shape1=4, shape2=198)
This returns approximately:

[ 0.005, 0.040 ].

Interpretation

We believe there is a 95% chance that the “bot probability” lies between 0.005 and 0.040 (given
the model and the observed data).
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When can we find the posterior distribution exactly?

Sometimes, the posterior has a recognisable named form.

We have already seen examples where:

Normal prior + Normal likelihood ⇒ Normal posterior.

Beta prior + Binomial likelihood ⇒ Beta posterior.

Pattern

The prior and posterior belong to the same family of distributions.
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Definition: conjugate prior

For a given likelihood π(y | θ), if the prior π(θ) and posterior π(θ | y) belong to the same
distribution family, then:

π(θ) is a conjugate prior for π(y | θ).

Why conjugacy is useful

Posterior can often be written in closed form.

Posterior summaries (mean, variance, credible intervals) can be computed easily.

Great for quick analysis, intuition, and exam questions.
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Example: exponential likelihood with gamma conjugate prior

Assume we observe n data points:

Y1, . . . ,Yn | λ cond. i.i.d.∼ Exp(λ), λ > 0.

This means the conditional density factorises:

π(y | λ) =
n∏

i=1

π(yi | λ).

For the exponential:
π(yi | λ) = λe−λyi 1(0,∞)(yi ).

Conjugate prior choice

λ ∼ Gamma(α, β), π(λ) ∝ λα−1e−βλ 1(0,∞)(λ).
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Deriving the posterior: likelihood × prior

Posterior (up to a constant):
π(λ | y) ∝ π(y | λ)π(λ).

First write the likelihood:

π(y | λ) =
n∏

i=1

λe−λyi = λn exp

(
−λ

n∑
i=1

yi

)
.

Multiply by the gamma prior:

π(λ | y) ∝ λne−λ
∑

yi︸ ︷︷ ︸
likelihood

·λα−1e−βλ︸ ︷︷ ︸
prior

= λ(α+n)−1 exp
(
−(β +

∑
yi )λ

)
.

Recognise the form

This is exactly the kernel of a Gamma distribution.
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Posterior result: Gamma again (conjugacy)

We conclude:

λ | y ∼ Gamma

(
α+ n, β +

n∑
i=1

yi

)
.

Therefore

Gamma prior + Exponential likelihood ⇒ Gamma posterior.

The Gamma prior is conjugate for the Exponential likelihood.

Practical meaning

Posterior uncertainty about the rate λ is updated by:

adding n to the shape parameter (more data ⇒ more concentration),

adding
∑

yi to the rate parameter (data-driven shift).
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Summary: what you should remember

1) Posterior is the main Bayesian output

π(θ | y) ⇒ P(θ ∈ A | y) =
∫
A
π(θ | y) dθ.

2) Even “up to a constant” is useful

We can sample from posteriors without normalising constants, then approximate probabilities by
counting samples.

3) Common posterior summaries

Posterior mean: E(θ | y)
Posterior mode / MAP: argmaxθ π(θ | y)
Credible interval: P(L ≤ θ ≤ U | y) = 1− α
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Summary: conjugate priors (big exam topic)

Conjugacy

A prior is conjugate if the posterior stays in the same distribution family.

Examples:

Normal–Normal conjugacy

Beta–Binomial conjugacy

Gamma–Exponential conjugacy

Next

We will continue this conjugate prior example tomorrow and practise similar derivations.
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Questions?
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