Bayes' Theorem: Derivation, Interpretation, and a First Worked

Example

Bayesian Inference & Computation

Bayesian Inference & Computation Bayes’ theorem 1/30



Plan for today

Warm-up recap: independence, conditional probability, exchangeability
Bayes' theorem: statement + proof from conditional probability

What each term means: posterior, likelihood, prior, marginal likelihood
Practical view: 7(6 | y) o< w(y | 8)m(0)

A first worked example: Normal likelihood with three different priors

(Optional) Implementation idea: simple R code + plotting intuition

Big message

Bayesian inference is about learning 6 from data y by combining:

data information (likelihood) x  belief information (prior).
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Warm-up 1: Exchangeability

Definition (exchangeability)

Random variables Yi,..., Yy are exchangeable if for every permutation o of {1,..., N},

(Y1, YN) = 7(Yoq), -5 Yo(ny)-

Equivalently, the joint distribution is invariant under re-ordering.
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Warm-up 1: Exchangeability

Definition (exchangeability)

Random variables Yi,..., Yy are exchangeable if for every permutation o of {1,..., N},

(Y1, YN) = 7(Yoq), -5 Yo(ny)-

Equivalently, the joint distribution is invariant under re-ordering.

@ Exchangeability expresses symmetry in the model: order does not matter.
o It is weaker than independence: you can have exchangeability without factorisation.

o It is often a modelling assumption for “similar” observations.
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Independence vs exchangeability

Independence (stronger)

If Y1,..., Yy are independent, then

W(Yl,...,YN):HW(Y,-).
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Independence vs exchangeability
Independence (stronger)

If Y1,..., Yy are independent, then

W(yl,...,YN)zl'[ﬂ(n).

Exchangeability (weaker, symmetry only)

If Y1,..., Yy are exchangeable, we only know

(Y1, YN) = 7(Yo@), -5 Yony) Vo,

but we do not necessarily get factorisation.
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Why did we care (briefly)?

Exchangeability was used as a stepping stone to justify subjective probability modelling (De
Finetti-type ideas): it explains why a “probability on parameters” can be coherent.
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Warm-up 2: A useful independence manipulation

Let A and B be independent events.

Key property

Independence means:
m(AN B) = n(A)m(B).
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Warm-up 2: A useful independence manipulation

Let A and B be independent events.

Key property

Independence means:

m(AN B) = n(A)m(B).

Conditioning on an event C

A common algebraic trick is to expand conditional probabilities like brackets:

T(ANB|C) = %.
Similarly, BAcC
m(B|C)= %
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Warm-up 2: A useful independence manipulation

Why this comes up repeatedly

These “expand-and-cancel” manipulations are used all the time when deriving Bayes' theorem,
posterior distributions, and conditional independence arguments.
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The Bayesian question

Main goal of Bayesian inference

We want the distribution of a model parameter 6 after observing data y:

(0 ]y).
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The Bayesian question

Main goal of Bayesian inference

We want the distribution of a model parameter 6 after observing data y:

(0 ]y).

@ 0 can be a single parameter (scalar) or a vector 6.
@ y can be a single observation or a dataset y = (y1,...,Y¥n).
@ The meaning is the same: “what do we know about 6 given the observed data?”
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Bayes' Theorem (statement)

Theorem (Bayes' theorem)
Given a parameter 6 and observed data y,

nly | 0)(6)

w01y ="
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Bayes' Theorem (statement)
Theorem (Bayes’ theorem)

Given a parameter 6 and observed data y,

0] y) = T 1O7(O)

m(y) )
Interpretation at a glance

m(y | 6) =(6)

N—_———

likelihood  prior
m0|y) = ——~—
N—— ﬂ-(y)
posterior S—~—

marginal likelihood
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Proof of Bayes' Theorem (just conditional probability)

Start from the definition of conditional probability

w0 ]y)= m(0.y) (assuming 7(y) > 0).

m(y)
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Proof of Bayes' Theorem (just conditional probability)

Start from the definition of conditional probability

7(6,y) -
(0 = assuming m(y) > 0).
(01y)="7%  (assuming (y) > 0) J
Also write conditional probability the other way
_7(0,y) ;
w(y|0)= () (assuming m(0) > 0).

A\
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Proof of Bayes' Theorem (just conditional probability)

Start from the definition of conditional probability

_ 7(0,y) -
(0] y) = ) (assuming m(y) > 0). )
Also write conditional probability the other way
_7(0,y) ;
w(y|0)= () (assuming m(0) > 0).

Rearrange the second equation

m(0,y) = n(y | 0) =(6).

v,
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Proof of Bayes' Theorem (just conditional probability)

Start from the definition of conditional probability

w0 ]y)= 725%/))/) (assuming 7(y) > 0).
Also write conditional probability the other way
_7(0,y) -
w(y|0)= () (assuming m(0) > 0).

Rearrange the second equation

m(0,y) = n(y | 0) =(6).

Substitute into the first equation

161 y)— 0[O 7(0)
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Why the proof feels “underwhelming”

@ The proof is algebraically simple because Bayes’ theorem is essentially a rearrangement
of conditional probability.

@ The power is not in the proof.

@ The power is in the interpretation and in what it lets us do:
combine prior beliefs with data evidence,

update beliefs coherently,

quantify uncertainty in 6,

do prediction via 7(y* | y).
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Labelling the terms in Bayes' theorem

Posterior: 7(6 | y)

@ The distribution of interest in Bayesian inference.

@ “What can we say about 0 after observing y?"
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Labelling the terms in Bayes' theorem
Posterior: 7(6 | y)

@ The distribution of interest in Bayesian inference.

@ “What can we say about 0 after observing y?"

Likelihood: m(y | 6)

@ Measures how compatible the data y is with each 6.

@ "“If 6 were true, how likely is the observed data?”
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Labelling the terms in Bayes' theorem
Posterior: 7(6 | y)

@ The distribution of interest in Bayesian inference.

@ “What can we say about 0 after observing y?"

Likelihood: m(y | 6)

@ Measures how compatible the data y is with each 6.

@ "“If 6 were true, how likely is the observed data?”

@ Encodes beliefs/knowledge about 6 before seeing the data.

@ A modelling choice: may be vague or informative.
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The marginal likelihood 7(y) and why we often ignore it

Marginal likelihood / evidence

m(y) = /w(y | ) w(0) do (or a sum if € is discrete).
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The marginal likelihood 7(y) and why we often ignore it

Marginal likelihood / evidence

m(y) = /w(y | ) w(0) do (or a sum if € is discrete).

e 7(y) is often hard to compute (integrals can be messy).
@ It does not depend on 6.

@ It is just a normalising constant to make the posterior integrate to 1.
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The marginal likelihood 7(y) and why we often ignore it

Marginal likelihood / evidence

m(y) = /w(y | ) w(0) do (or a sum if € is discrete).

e 7(y) is often hard to compute (integrals can be messy).
@ It does not depend on 6.

@ It is just a normalising constant to make the posterior integrate to 1.

Practical form we will use most of the time

(0] y) o< m(y | 0)m(0).
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A modelling rule: “don’t use the data twice”

Important modelling principle

The prior m(#) should be chosen before looking at the current dataset.
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A modelling rule: “don’t use the data twice”

Important modelling principle

The prior m(#) should be chosen before looking at the current dataset.

@ You may use:
e domain knowledge,
e previous studies,
e expert opinion,
o physical constraints (e.g. 6 > 0).
@ But you should not set the prior by inspecting the same data y you then plug into the
likelihood.

Bayesian Inference & Computation Bayes’ theorem 14 /30



A modelling rule: “don’t use the data twice”

Important modelling principle

The prior m(#) should be chosen before looking at the current dataset.

@ You may use:
e domain knowledge,
e previous studies,
e expert opinion,
o physical constraints (e.g. 6 > 0).
@ But you should not set the prior by inspecting the same data y you then plug into the
likelihood.

Simple example

If 1o is the population mean height, you cannot:
look at the sample y = choose prior mean equal to the sample mean.

That would “double count” the data.
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Historical intermission: Thomas Bayes (1700s)

@ Thomas Bayes was a UK minister (Tunbridge Wells) with strong mathematical ability.
@ Bayesian inference is named after him largely by historical accident.

e His famous “idea” is often described using a ball/beanbag thought experiment:

o throw objects onto a table (unknown landing distribution),
@ observe outcomes,
e update beliefs about future outcomes given past outcomes.
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Historical intermission: Thomas Bayes (1700s)

@ Thomas Bayes was a UK minister (Tunbridge Wells) with strong mathematical ability.

@ Bayesian inference is named after him largely by historical accident.
e His famous “idea” is often described using a ball/beanbag thought experiment:

o throw objects onto a table (unknown landing distribution),
@ observe outcomes,
e update beliefs about future outcomes given past outcomes.

Core theme

Beliefs should be updated when data arrives. That is the philosophical backbone of Bayesian
thinking.
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A (very) short note on the historical motivation

A famous quote attributed to this early line of work is about fixed laws of nature:
“...to show what reason we have for believing that there are, in the constitution of things,
fixed laws according to which events happen...”
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A (very) short note on the historical motivation

A famous quote attributed to this early line of work is about fixed laws of nature:
“...to show what reason we have for believing that there are, in the constitution of things,
fixed laws according to which events happen...”
@ Historically, these ideas were tied to philosophical/theological arguments.

@ Modern Bayesian statistics is not about theology: it is a practical mathematical
framework for uncertainty and learning from data.
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Worked example: Normal model for an unknown mean

Assume a single observation Y satisfies

Y |0~ N6, 1).
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Worked example: Normal model for an unknown mean

Assume a single observation Y satisfies

Y |0~ N6, 1).

@ The parameter is 6 € R, the (unknown) mean.
@ The variance is known and fixed: 1.

@ We will compare different priors 7(6) and see their effect on 7(6 | y).
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Worked example: Normal model for an unknown mean

Assume a single observation Y satisfies

Y |0~ N6, 1).

@ The parameter is 6 € R, the (unknown) mean.
@ The variance is known and fixed: 1.

@ We will compare different priors 7(6) and see their effect on 7(6 | y).

Bayes' rule for this model

(0| y) ocm(y [ 0)m(0).

Bayesian Inference & Computation Bayes’ theorem 17 /30



Step 1: Write down the likelihood

Likelihood function
Since Y | 6 ~ N(6,1), we have
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Step 1: Write down the likelihood

Likelihood function
Since Y | 6 ~ N(6,1), we have

@ Think of this as a function of § with y fixed.
o It tells us which values of § make the observed y plausible.
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Step 2: Choose a prior (three options)

We now choose 7(#), encoding beliefs about 6 before observing the data.
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Step 2: Choose a prior (three options)

We now choose 7(#), encoding beliefs about 6 before observing the data.

Prior option 1: Very vague (wide uniform)

6 ~ Unif(—10,000, 10,000),  7(0) = ———

So 7(f) x 1 on [—10,000, 10,000].
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Step 2: Choose a prior (three options)

We now choose 7(#), encoding beliefs about 6 before observing the data.

Prior option 1: Very vague (wide uniform)

6 ~ Unif(—10,000, 10,000),  7(0) = ———

So 7(f) x 1 on [—10,000, 10,000].

Prior option 2: Constraint information (positive only)

6 ~ Unif (0, 10,000),  (6)

So 7(#) < 1 on [0,10,000] and 0 otherwise.
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Step 2 continued: An informative prior

Prior option 3: Informative normal

Assume expert knowledge suggests 6 is around 3 with uncertainty 0.7:

22
0 ~N@3,07%), w0 = \/%0'7 exp (‘%) '
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Step 2 continued: An informative prior

Prior option 3: Informative normal

Assume expert knowledge suggests 6 is around 3 with uncertainty 0.7:

@ This prior concentrates probability mass near § = 3.

6 ~N@3,07%), (0=

@ Smaller prior variance 0.72 means stronger prior belief.
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Step 3: Observe data

After effort and cost, we collect one data point:

y=0.
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Step 3: Observe data

After effort and cost, we collect one data point:

y=0.

Likelihood at y =0

Plug y = 0 into the likelihood:

w(y =00) = \/%exp<_92—2> .
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Posterior under Prior 1 (wide uniform)

m(0) o 1 for 6 € [~10,000,10,000].
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Posterior under Prior 1 (wide uniform)

m(0) o 1 for 6 € [~10,000,10,000].

v

Posterior

2
m(0 |y =0)xm(y =0]0)r(0) x exp <—%> for € [—10,000, 10,000].
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Posterior under Prior 1 (wide uniform)

m(0) o 1 for 6 € [~10,000,10,000].

Posterior

2
m(0 |y =0)xm(y =0]0)r(0) x exp <—%> for € [—10,000, 10,000].

@ Since the prior is (almost) constant, the posterior looks like the likelihood.

@ In practice, this behaves like a A/(0,1) shape (with extremely wide truncation).
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Posterior under Prior 2 (positive-only uniform)

m(f) x1 for 6 € [0,10,000], m(0) = 0 otherwise.
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Posterior under Prior 2 (positive-only uniform)

m(f) x1 for 6 € [0,10,000], m(0) = 0 otherwise.

Posterior

92
m(0 [ y =0) o< exp (—?) 1(0,10,0007(0)-
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Posterior under Prior 2 (positive-only uniform)

m(f) x1 for 6 € [0,10,000], m(0) = 0 otherwise.

Posterior

92
m(0 [ y =0) o< exp (—?) 1(0,10,0007(0)-

@ Same Gaussian-shaped likelihood, but we forbid negative 6.

@ This produces a truncated normal-like posterior supported on 6 > 0.
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Posterior under Prior 3 (informative normal)

7(0) exp(_u) .

2(0.7)2
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Posterior under Prior 3 (informative normal)

7(8) o exp( (6= 3)2) .

~2(0.7)2

Posterior (unnormalised)

(0| y = 0) o< exp (_92—2> exp(— (29 ((;73))22) .
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Posterior under Prior 3 (informative normal)

7(0) o exp(_u) .

2(0.7)2

Posterior (unnormalised)

w01y =0)x o0(~2 oo -5

@ Posterior is the product of two exponentials.
o It will again be proportional to a Gaussian-shaped function in 6.

@ Its mean will lie between 0 (data) and 3 (prior), typically closer to the more “certain”
source.
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What the posterior is doing (the intuition)

Key idea

Posterior o< Likelihood x Prior.
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What the posterior is doing (the intuition)

Key idea

Posterior o< Likelihood x Prior.

@ Likelihood is “what the data says” about 6.

@ Prior is “what we believed before data” about 6.
@ Multiplying them blends information:

e A vague prior = posterior mostly follows the likelihood.
o A strong informative prior = posterior shifts towards the prior.
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What the posterior is doing (the intuition)

Key idea

Posterior o< Likelihood x Prior.

@ Likelihood is “what the data says” about 6.

@ Prior is “what we believed before data” about 6.

@ Multiplying them blends information:

e A vague prior = posterior mostly follows the likelihood.
o A strong informative prior = posterior shifts towards the prior.

Important trend with more data
With many observations, the likelihood becomes sharper, and the posterior is dominated more
by data.
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How to compute and plot in R (conceptual)

We can visualise the relationship:

posterior o< likelihood x prior.
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How to compute and plot in R (conceptual)

We can visualise the relationship:

posterior o< likelihood x prior.

Suggested workflow

@ Choose a grid of # values (e.g. from —5 to 5).
@ Evaluate:

L) =7(y [6),  p(6) =m(6).
© Compute unnormalised posterior:

O | y) = L(0)p(0).

© Normalise numerically (optional), or just compare shapes.
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A picture you should remember

Likelihood Prior
m(y|9) m(0)

Posterior
(0| y)

(0 [ y) occmly | 0)m(0)
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A picture you should remember

Likelihood Prior
m(y|9) m(0)

Posterior
(0| y)

(0 [ y) occmly | 0)m(0)

Mental model
Bayesian inference is multiplication of curves followed by normalisation.
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Interpreting the 3-by-3 grid plot (likelihood / prior / posterior)

What the grid is showing
@ Column 1: the likelihood curve L(#) (same for all priors)
@ Column 2: the prior curve p(#) (changes with prior choice)
@ Column 3: the posterior curve p(6 | y) = L(0)p(0)
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Interpreting the 3-by-3 grid plot (likelihood / prior / posterior)

What the grid is showing

@ Column 1: the likelihood curve L(#) (same for all priors)
@ Column 2: the prior curve p(#) (changes with prior choice)
@ Column 3: the posterior curve p(6 | y) = L(0)p(0)

What you should notice

@ Uniform prior = posterior = likelihood shape.

@ Positive-only prior = posterior is “likelihood chopped in half".

@ Normal prior = posterior is a compromise between data-centred and prior-centred beliefs.

v
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Bayes' theorem:

_ 7y [0)=(6)

@ Practical version:
(0| y) ocm(y | 0)m(0).
Posterior combines:

o data evidence (likelihood),
o prior belief (prior).

@ The marginal likelihood 7(y) is a normalising constant (often ignored in algebra).
@ In the Normal mean example, changing the prior can change the posterior a lot when data
are scarce.
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Next (preview)

Next lectures: hands-on posterior derivations

We will practise computing posteriors for many common models by repeatedly applying:

(0| y) ocw(y | 0)m(0).
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Next (preview)

Next lectures: hands-on posterior derivations

We will practise computing posteriors for many common models by repeatedly applying:

(0| y) ocw(y | 0)m(0).

@ You will see many likelihoods and many priors (and their consequences).

@ We will also start discussing prediction and computation.
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