
Example: Binomial Model + Beta Posterior
Bots on a Social Media Platform (Bayesian inference)

(Lecture slides)
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Story / context (why this model appears everywhere)

Problem

A social media company wants to estimate:

θ = Pr(an account is a bot).

There are many users (e.g. millions), but checking all accounts is impossible.

A software engineer takes a random sample of n = 200 accounts.

Among them, y = 3 are identified as bots.

Main goal

Use the data (y = 3, n = 200) to infer what values of θ are plausible, and quantify uncertainty.
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Modelling assumptions (Binomial setting)

We represent each sampled account by a binary random variable:

Xi =

{
1, if account i is a bot,

0, if account i is human.

Assumptions

Same bot probability: Pr(Xi = 1) = θ for all i .

Independence: X1, . . . ,Xn are independent (approximately reasonable if population is
large).

Consequence

Xi | θ ∼ Bernoulli(θ), Y =
n∑

i=1

Xi | θ ∼ Binomial(n, θ).

Here Y is the number of bots found in n sampled accounts.
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Observation in this example

n = 200, y = 3.

We observed only one number y (the count of bots).

But it summarises 200 independent Bernoulli trials.

Interpretation

This is a “success/failure repeated trials” scenario:

Success = “account is a bot”

Number of successes = y

Number of trials = n
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Likelihood: what is π(y | θ)?

Given θ, the distribution of Y is binomial:

Y | θ ∼ Binomial(n, θ).

Binomial likelihood

π(y | θ) =
(
n

y

)
θy (1− θ)n−y , y = 0, 1, . . . , n.

In our data (n = 200, y = 3)

π(y = 3 | θ) =
(
200

3

)
θ3(1− θ)197.
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Bayes’ rule: posterior is proportional to prior × likelihood

Bayes’ theorem (density form):

π(θ | y) = π(θ)π(y | θ)∫ 1
0 π(θ)π(y | θ) dθ

.

Key point (what we often use in algebra)

π(θ | y) ∝ π(θ)π(y | θ).

The symbol “∝” means: equal up to a normalising constant.

That normalising constant does not depend on θ.

So when identifying the posterior family, we focus on the parts that depend on θ.
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A simple prior: Uniform(0, 1)

Suppose we have no strong reason to prefer any particular value of θ a priori.

Uniform prior

θ ∼ Uniform(0, 1), π(θ) = 1, 0 < θ < 1.

This says: before seeing data, all θ ∈ (0, 1) are equally plausible.

It is a very common “default” prior for a probability parameter.
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Posterior with Uniform prior: simplify using proportionality

Start from
π(θ | y) ∝ π(θ)π(y | θ).

Plug in the uniform prior π(θ) = 1

π(θ | y) ∝ 1 ·
(
n

y

)
θy (1− θ)n−y .

Drop constants that do not depend on θ

π(θ | y) ∝ θy (1− θ)n−y .

In our data (n = 200, y = 3)

π(θ | y) ∝ θ3(1− θ)197.
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Recognising the Beta distribution

A Beta distribution is defined by:

θ ∼ Beta(α, β), π(θ) =
1

B(α, β)
θα−1(1− θ)β−1, 0 < θ < 1.

B(α, β) is a normalising constant (so density integrates to 1).

The shape comes from:
θα−1(1− θ)β−1.

Matching exponents

If the posterior looks like
θy (1− θ)n−y ,

then we match it with Beta form:

α− 1 = y , β − 1 = n − y .
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Posterior result for this dataset

We had:
π(θ | y) ∝ θ3(1− θ)197.

Match to Beta:
θα−1(1− θ)β−1.

Solve for (α, β)

α− 1 = 3 ⇒ α = 4, β − 1 = 197 ⇒ β = 198.

Posterior distribution

θ | y = 3 ∼ Beta(4, 198).
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Uniform(0, 1) is a special case of Beta

Recall:
θ ∼ Beta(α, β) =⇒ π(θ) ∝ θα−1(1− θ)β−1.

Set α = β = 1

π(θ) ∝ θ0(1− θ)0 = 1, 0 < θ < 1.

Conclusion

Uniform(0, 1) ≡ Beta(1, 1).

This is useful because it puts our “uninformative” prior inside the Beta family.

Once we use Beta priors, the algebra becomes very clean.
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Conjugacy: Beta prior + Binomial likelihood

Now suppose a more general prior:

θ ∼ Beta(α, β).

Prior density (up to constants)

π(θ) ∝ θα−1(1− θ)β−1.

Likelihood:
π(y | θ) ∝ θy (1− θ)n−y .

Posterior

π(θ | y) ∝ θα−1+y (1− θ)β−1+n−y .

Therefore

θ | y ∼ Beta(α+ y , β + n − y).
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Why we call this a “conjugate prior”

Definition idea (informal)

A prior is conjugate to a likelihood if the posterior stays in the same distribution family.

Here:
Prior: Beta(α, β) ⇒ Posterior: Beta(α+ y , β + n − y).

So Beta is conjugate to Binomial.

What changes after seeing data?

Only the parameters update:

(α, β) −→ (α+ y , β + n − y).

The family does not change.
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Posterior interpretation: “pseudo-counts” intuition

With θ ∼ Beta(α, β):

Interpretation

α− 1 ≈ prior bot-count, β − 1 ≈ prior human-count.

After observing y bots and n − y humans:

θ | y ∼ Beta(α+ y , β + n − y).

Meaning

Data simply adds counts:

(bot count) + y , (human count) + (n − y).

Uniform prior Beta(1, 1) has “zero” pseudo-counts.
So with y = 3, n = 200:

Beta(1, 1) → Beta(4, 198).
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Point estimates from the posterior (optional but useful)

For θ ∼ Beta(α, β):

Posterior mean

E[θ | y ] = α

α+ β
.

Posterior mode (MAP), if α, β > 1

θMAP =
α− 1

α+ β − 2
.

For our posterior Beta(4, 198)

E[θ | y ] = 4

4 + 198
=

4

202
≈ 0.0198, θMAP =

3

200
= 0.015.

Posterior mean is slightly larger than 3/200 due to the prior adding 1 to both counts.
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Summary: what did we learn from this example?

The modelling pipeline

1 Identify repeated success/failure trials ⇒ Binomial model.

2 Write likelihood:

π(y | θ) =
(
n

y

)
θy (1− θ)n−y .

3 Choose prior for θ (Uniform or Beta).

4 Apply Bayes:
π(θ | y) ∝ π(θ)π(y | θ).

5 Recognise posterior as Beta:

θ | y ∼ Beta(α+ y , β + n − y).

For n = 200, y = 3 with uniform prior

θ | y ∼ Beta(4, 198).
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What this sets up for later lectures

Conjugacy gives closed-form posteriors (fast inference).

Beta–Binomial is a prototype for many Bayesian models:

Dirichlet–Multinomial (categorical outcomes)
Normal–Normal (Gaussian mean with known variance)
Gamma–Poisson (count data)

We will later discuss:

prior choice (informative vs weakly informative),
uncertainty summaries (credible intervals),
prediction for new data.

Big message

Choosing a good prior family can make Bayesian updating algebraic, interpretable, and
scalable.
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