Example: Binomial Model + Beta Posterior

Bots on a Social Media Platform (Bayesian inference)
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Story / context (why this model appears everywhere)

A social media company wants to estimate:

6 = Pr(an account is a bot).

@ There are many users (e.g. millions), but checking all accounts is impossible.
@ A software engineer takes a random sample of n = 200 accounts.

@ Among them, y = 3 are identified as bots.

Main goal

Use the data (y = 3, n = 200) to infer what values of 6 are plausible, and quantify uncertainty.
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Modelling assumptions (Binomial setting)

We represent each sampled account by a binary random variable:

~ )1, ifaccount iis a bot,
I 0, if account / is human.

e Same bot probability: Pr(X; =1) = 6 for all .
e Independence: Xi,..., X, are independent (approximately reasonable if population is
large).

Consequence

Xi | 8 ~ Bernoulli(f), Y =" X; | 6 ~ Binomial(n, 6).
i=1

Here Y is the number of bots found in n sampled accounts.
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Observation in this example

n=1200, y=3.

@ We observed only one number y (the count of bots).

o But it summarises 200 independent Bernoulli trials.

Interpretation

This is a “success/failure repeated trials” scenario:
@ Success = “account is a bot”
@ Number of successes = y

@ Number of trials = n
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Likelihood: what is 7(y | 6)7

Given 6, the distribution of Y is binomial:

Y | 6 ~ Binomial(n, 6).

Binomial likelihood

w(y | 0) = (;)em 0", y=0,1,....n

In our data (n = 200,y = 3)

m(y=31]60) = (220) 03(1 — 0)1".
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Bayes' rule: posterior is proportional to prior x likelihood

Bayes' theorem (density form):

Key point (what we often use in algebra)

(0 | y) o< w(6) m(y | 6).

@ The symbol “x” means: equal up to a normalising constant.
@ That normalising constant does not depend on 6.

@ So when identifying the posterior family, we focus on the parts that depend on 6.

(Lecture slides) Example: Binomial Model + Beta Posterior 6/17



A simple prior: Uniform(0, 1)

Suppose we have no strong reason to prefer any particular value of 8 a priori.

Uniform prior

6 ~ Uniform(0, 1), m(@)=1, 0<6O<L

@ This says: before seeing data, all 6 € (0,1) are equally plausible.

@ It is a very common "“default” prior for a probability parameter.
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Posterior with Uniform prior: simplify using proportionality

Start from
(0| y) ocw(0) w(y | 0).

Plug in the uniform prior 7(6) =1

7@ |y)ox1- (”) 6Y(1— 0)".

Drop constants that do not depend on ¢

| k<
\

(0| y) x6(1—-0)"7.

\

In our data (n = 200,y = 3)

(0| y) x 83(1 — 0)17.
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Recognising the Beta distribution

A Beta distribution is defined by:
1
(a, 8)

e B(a, ) is a normalising constant (so density integrates to 1).
@ The shape comes from:

0~ Beta(a, ), () = 5 01 (1-0)"1, 0<o<1.

01— 6) "

Matching exponents

If the posterior looks like
0"(1—6)",

then we match it with Beta form:

a—1=y, B—1=n—y.
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Posterior result for this dataset

We had:
(0| y) x 83(1 — 0)17.

Match to Beta:
01— 9)PL.

Solve for (a, 3)

a-1=3 = a=4, B-1=197 = B=198.

Posterior distribution

6 | y = 3 ~ Beta(4, 198).
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Uniform(0, 1) is a special case of Beta

Recall:
0 ~ Beta(a, ) = w(6) x #*1(1—0) 1.

Seta=p=1

(@) x°1-6)°=1, 0<6<1.

Uniform(0, 1) = Beta(1, 1).

@ This is useful because it puts our “uninformative” prior inside the Beta family.

@ Once we use Beta priors, the algebra becomes very clean.
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Conjugacy: Beta prior + Binomial likelihood

Now suppose a more general prior:

0 ~ Beta(a, ).

Prior density (up to constants)

7(0) x 0271(1 — )1

Likelihood:

m(y | 0) < 0¥(1—6)".

Posterior

7(0 | y) ox 071y (1 — g)P1+y,

Therefore

0|y ~Beta(a+y, B+n—y).
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Why we call this a “conjugate prior”

Definition idea (informal)

A prior is conjugate to a likelihood if the posterior stays in the same distribution family.

o Here:
Prior: Beta(a, 5) = Posterior: Beta(a+y,8+ n—y).

@ So Beta is conjugate to Binomial.

What changes after seeing data?

Only the parameters update:

(,8) — (a+y, B+n—y)

The family does not change.
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Posterior interpretation: “pseudo-counts” intuition

With 6 ~ Beta(a, 3):

Interpretation

« — 1 & prior bot-count, B — 1 & prior human-count.

After observing y bots and n — y humans:

0|y ~Beta(a+y, B+n—y).

Meaning

Data simply adds counts:

(bot count) + vy, (human count) + (n—y).

@ Uniform prior Beta(1,1) has “zero” pseudo-counts.
@ So with y =3, n =200:
Beta(1,1) — Beta(4, 198).
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Point estimates from the posterior (optional but useful)

For 6 ~ Beta(a, 5):

Posterior mean

E[0|y] =

Q
a+ B’

Posterior mode (MAP), if a, f > 1

a—1

0
MAP = atB_2

For our posterior Beta(4, 198)

4 4 3
— " ~0.0198 Oriap = —— = 0.015.
44108 202 ’ MAP = 500

E[6|y] =

@ Posterior mean is slightly larger than 3/200 due to the prior adding 1 to both counts.
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Summary: what did we learn from this example?

The modelling pipeline

O lIdentify repeated success/failure trials = Binomial model.
@ Write likelihood:

w10 = (7)era-or.

© Choose prior for 6 (Uniform or Beta).

@ Apply Bayes:
m(0 | y) ocm(O)m(y [ 6)-

© Recognise posterior as Beta:

0|y~ Beta(a+y,B+n—y).

For n =200, y = 3 with uniform prior
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What this sets up for later lectures

e Conjugacy gives closed-form posteriors (fast inference).
@ Beta—Binomial is a prototype for many Bayesian models:

o Dirichlet—-Multinomial (categorical outcomes)
e Normal-Normal (Gaussian mean with known variance)
o Gamma—Poisson (count data)

o We will later discuss:

e prior choice (informative vs weakly informative),
e uncertainty summaries (credible intervals),
e prediction for new data.

Big message

Choosing a good prior family can make Bayesian updating algebraic, interpretable, and
scalable.
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