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Welcome

@ Hi everyone — I'm Billy Jungi Tang, the lecturer for Bayesian Inference and
Computation (4BIC).
o This is a Master’s-level statistics module.

o It is worth 20 credits and lectures run up to Easter.

Today (Lecture 1)
@ Quick admin: where materials are, timetable, assessment

@ Big picture: what Bayesian inference is and why we care
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Module materials: Canvas

Everything you need is on Canvas:

Lecture notes link

Lab sheets + guidance

°
°
@ Assessment schedule + feedback information
@ Recommended reading list

°

Reference page for common probability distributions

If you can't find something

Check Canvas first — then email me if it's genuinely missing.
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Lecture notes

All the lecture notes are written in Bookdown.

Why Bookdown is useful
@ More interactive than a static PDF
@ You can change the font size

@ Built-in search function
@ Download options:
o PDF
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Copy-and-paste coding workflow

A nice feature of Bookdown notes is that you can copy and paste code directly.

Why this matters

@ We will do a lot of coding in R throughout the module.

@ You can copy code chunks straight into R / RStudio.
@ This helps you focus on:

e understanding what the code does
e modifying it
@ running experiments
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Computer lab: key information

You must bring a device

Please bring a laptop (or something similar) that can run R.

Friday at 1pm.

Practical reality
You cannot really complete the module well without doing the coding.
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Weekly structure

Each week has the same structure:

@ 3 lectures
o 1 computer lab

@ 1 guided study session

Lectures: theory + intuition + modelling ideas

Labs: turn theory into practice using R

Guided study: consolidate, discuss, ask questions
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Assessment: overview

This module is assessed 50/50:

‘50% Exam + 50% Coursework‘

@ Summer exam period

@ Tests understanding + ability to reason with Bayesian ideas

@ Coursework is coding-focused

@ You'll analyse data by implementing Bayesian ideas in R
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Coursework schedule (Canvas)

On Canvas:
Assessment & Feedback — Coursework timetable

o Coursework 1: 10%

@ Coursework 2: 20%
o Coursework 3: 20%

Release weeks

Courseworks are released on the Monday of:

Week 3, Week 7, Week 10.
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Coursework 1: coding quality matters

Important message

Coursework 1 is designed to encourage good coding practice.

@ The statistics may be relatively straightforward.
@ But there are marks for writing clear code:

e coherent structure
readable formatting
sensible variable names
clear logic and outputs

In real work (academia or industry), messy code costs time, money, and errors.
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Coursework guidance + feedback

Coursework briefings
On the Monday of Weeks 3, 7, and 10:

o I'll explain what the coursework is asking for

@ What's expected

@ How the mark scheme works

Feedback
@ There are deadlines for when feedback must be returned.
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Extensions and wellbeing

If you need an extension due to wellbeing or other issues:

@ Please apply via the wellbeing team.

@ Do not apply to me directly (I cannot grant extensions).

General comment
This is the same policy across all modules.
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Office hours and communication

@ Tuesday 2pm-4pm.

Good habit
Ask questions early rather than waiting until deadline week.
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Recommended books (optional)

You don't need to buy books — everything required is in the notes.

If you want extra support

@ Bayesian Statistics (short, dry, definition-focused)
@ Bayesian Data Analysis (long, comprehensive, opinionated)

© Statistical Rethinking (intuitive, example-driven, very readable)
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Videos: Statistical Rethinking
Extra resource
The author of Statistical Rethinking has a full lecture series on YouTube.

@ Videos are very good for intuition.

@ The author is an anthropologist, not a “traditional statistician”.

@ Examples can be... distracting (in a fun way).

You may end up in a Wikipedia rabbit hole about anthropology.
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Reference distributions on Canvas

On Canvas you will also find a reference sheet for distributions you should know:

Normal

°
o Beta

e Gamma
@ Exponential
°

Binomial

We use these repeatedly, so having them in one place is helpful.
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Module roadmap
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Why this module exists

Bayesian Inference and Computation gives you a new set of tools for statistical inference,
beyond the classical / frequentist methods you have learned so far.

@ We will learn how to reason under uncertainty using probability.
@ We will focus on probabilistic modelling and computation.
@ We will use R and RStudio throughout.
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What is statistical inference?

Informal definition

Statistical inference means: using data to draw conclusions about quantities that are
unobserved.

Type 1: Prediction Type 2: Unobservable quantities

Unobserved events or events that haven't Quantities that cannot be directly observed.
happened yet. @ regression parameters

@ clinical trials: future patient outcomes e latent variables

@ insurance: future payouts and premiums o hidden states in a model

o forecasting: demand, risk, trends

.
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Where you are starting from: classical inference

So far, most of your statistics has been classical / frequentist.

Typical frequentist workflow

@ Assume a data-generating model
@ Use long-run frequency arguments
© Estimate parameters via maximum likelihood (MLE) and variants

@ Quantify uncertainty using confidence intervals and tests

In this module
We are not going to focus on classical inference workflows.
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The Bayesian shift in one sentence

Key idea

Bayesian inference uses a definition of probability that supports subjective uncertainty, and
uses Bayes’ theorem to infer:

model parameters given observed data
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Bayes' theorem as a modelling tool

We start with a model and a likelihood, just like classical inference.

Likelihood (data model)

m(y | #) (probability of data given parameters)

Bayesian inference uses Bayes’ theorem:

m(y | 0) (6)
w(f|y)=—-—"".
(@ 1]y) )
o 7(0): prior (belief / information before data)
o 7(0 | y): posterior (belief after seeing data)
e 7(y): evidence / marginal likelihood (normalising constant)
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Classical vs Bayesian: what changes?

Classical inference Bayesian inference

@ Main object: @ Main object:

m(y | 0) (0 [ y)

@ Estimate 6 via: @ Output is a distribution over 6
@ Uncertainty is direct:
e posterior means/medians
o credible intervals
@ Uncertainty via: o posterior predictive checks
e confidence intervals
o tests / p-values

Omie = arg meaxw(y | 6)
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Why do we want a distribution?

A point estimate like 0 is useful, but it hides uncertainty.

Bayesian outputs are uncertainty-aware

From 7(6 | y) we can compute:
@ Most plausible values of § (mean/median/mode)
@ Uncertainty intervals (credible intervals)

@ Probabilities of hypotheses:
Pr(0 >0]y), Pr(0eAly)

@ Predictions for new data:

7o 1) = [ 5o |0)5(9] y)
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The module has two connected parts

Part 1: Theory (lectures) Part 2: Practice (labs)
@ Bayesian probability @ Implement methods in R / RStudio
@ Bayes' theorem for inference o Work with real data
@ Modelling assumptions + interpretation o Compute posterior summaries +
@ Sampling theory and computation uncertainty
@ Build good coding habits

Key message
Bayesian inference is powerful — but often computational.
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Why computation matters in Bayesian inference

Bayes' theorem is simple to write, but hard to compute in practice.

The posterior can be:

@ high-dimensional, non-Gaussian, multi-modal
@ analytically intractable
So you usually cannot “solve” it by hand.

We compute with sampling-based methods:

oM 9 N ~x(0]y)

and use samples to approximate posterior quantities.
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R and RStudio
Practical skills
All labs and coursework will be in R, using RStudio.

@ We start with R workshops early on.

o If you are new to R: we will build up slowly and support you.

o If you already know R: you will learn how to implement inference cleanly.
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Module roadmap

What we will cover

© Fundamentals of Bayesian inference

© Bayesian modelling in practice

@ Subjectivity in modelling (priors + assumptions)
© Sampling methods (core computation tools)

© Markov Chain Monte Carlo (MCMC)

@ Advanced computation topics
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1) Fundamentals of Bayesian inference

Main questions

@ What is Bayesian probability?
@ How do we interpret probability as uncertainty?
@ How does Bayes’' theorem build posterior beliefs?

@ What does it mean to “learn” from data?

Takeaway

Bayesian inference formalises learning by updating beliefs:

prior — posterior.
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2) Bayesian inference in practice

Once we can write down (€ | y), we can solve real data problems.

@ Given a particular dataset, what is a sensible model?
@ What likelihood should we use?

@ What does a posterior tell us about parameters?

@ How do we quantify uncertainty and make predictions?
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3) The subjective nature of Bayesian inference

A key feature of Bayesian inference is that models involve choices.

Subjective ingredients
@ Prior distributions: 7(6)
o Likelihood assumptions: 7(y | 6)

@ Independence assumptions, noise models, constraints

Core questions

@ Which assumptions are reasonable in a given context?
@ Which assumptions are dangerous or misleading?

@ How sensitive are results to these choices?
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4) Sampling methods: getting started

We need to generate random samples from distributions.

Foundational sampling techniques

@ Inverse transform sampling

@ Rejection sampling

Why these matter

They teach core principles that later scale up to Bayesian computation:

@ how to sample from complicated distributions
@ how to validate sampling algorithms

@ how to turn probability into computation
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5) Markov Chain Monte Carlo (MCMC)

MCMC is the workhorse method for Bayesian computation.

Why MCMC?

e In realistic models, m(0 | y) is complex and high-dimensional.
@ Direct sampling is impossible.

@ MCMC constructs a Markov chain whose stationary distribution is:

(0 | y).
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Checking MCMC works (diagnostics)

You should not blindly trust an algorithm just because it runs.

Practical questions

@ Has the chain converged to stationarity?
e Is it mixing well (exploring the posterior efficiently)?

@ Are there signs of autocorrelation or poor exploration?

We do not want algorithms that take days to generate useful samples.

Billy Junqi Tang (School of Mathematics) 4BIC Lecture 1 34 /78




Making sampling algorithms faster

Sampling performance depends on algorithm design + tuning.

What we can adjust

@ proposal distributions (step sizes, scales)
@ acceptance rates

@ reparameterisations

°

computational tricks (vectorisation in R)

Efficient computation = practical Bayesian inference on real datasets.
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6) Advanced topic: data augmentation (missing data)

Missing data is common in real-world problems.

Classical difficulty

Classical approaches often require detailed assumptions like:
@ missing completely at random (MCAR)
@ missing at random (MAR)
@ missing not at random (MNAR)

Bayesian viewpoint

Treat missing values as additional unknowns and infer them:

7'('(9, Ymiss | }/Obs)-
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Why data augmentation is powerful

@ Clinical trials: patients drop out = outcomes unobserved

e Crime/forensics: events may go unrecorded or partially observed

Core idea

Instead of classifying missingness only, we can learn plausible missing values from the
structure in the observed data.
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7) Advanced topic: Bayesian nonparametric regression

Sometimes you do not want to assume a fixed parametric form.

Classical mindset

Choose a model like:
y=00+B1x+e

(linear predictor with finite-dimensional parameters).

Nonparametric mindset

Assume:
y="f(x)+e,

where f is unknown. Bayesian inference allows us to place a distribution over functions:

f ().
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What it means to “sample a function”

In Bayesian nonparametrics, uncertainty lives in a random function.

Instead of sampling parameters 6 € R?, we may sample:

f(-) (a random function).

@ This yields flexible regression models.
@ Uncertainty bands come naturally from posterior samples.

@ Often easier to reason about than complex classical alternatives.
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What you will be able to do by the end

Build Bayesian models for real datasets

Use Bayes' theorem to form posteriors

Compute posterior summaries + uncertainty quantification
Implement sampling algorithms in R

Diagnose and improve MCMC performance

Extend Bayesian inference to missing data and flexible regression
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Module roadmap
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Big picture: what is Bayesian inference?

Before we start the technical content, we need a big-picture overview:

@ What is Bayesian inference?
@ How is it different from what you've done before?

e Why do Bayesians think they're right? (yes, we are opinionated)

How many of you have done Bayesian inference before? \
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Your previous experience: frequentist inference

So far in your maths/stats background, you've mainly seen:

Frequentist / classical inference

Inference built around the likelihood function:

@ Choose a model
@ Write down the likelihood
@ Collect data

@ Use likelihood to estimate parameters and do inference

Typical tools

e maximum likelihood estimation (MLE)
@ hypothesis tests

@ confidence intervals
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Axioms: algebra vs probability

In first-year algebra/analysis you learn axioms like:
at+b=>b+a

You do not prove them — you accept them.

Probability is the same

Probability has axioms and definitions too, but people rarely stop and ask:

“What does probability actually mean?”

We begin by discussing different definitions of probability.
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Frequentist probability: long-run frequency

Definition (informal)

In frequentist probability:

P(A) = long-run relative frequency of event A.

Dice example

Roll a fair die many times:
5 _ #{6%)
P(roll a 6) = ZTrolls) —

1
6
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Relative frequency plot intuition

When you repeat the experiment many times:

o After the first roll:

o if you get a 6, the frequency is 1 (100%)
o After two rolls:

o if only one 6, the frequency is 1/2 (50%)
@ As the number of rolls grows:

: 1
relative frequency — 5

Why it feels natural
It is simple enough to understand in primary school.
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The problem: repetition is baked in

The long-run definition of probability:

@ makes the foundations intuitive,

@ but forces “repeat the experiment” into everything.

Consequence

Later concepts become:
@ technical
@ unintuitive

@ hard to explain in plain language
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Confidence intervals: the unintuitive definition

Frequentist definition (idea)

A 95% confidence interval means:
If you repeated the experiment many times and built an interval each time, 95% of
those intervals would contain the true parameter.

What people want it to mean

Pr(6 is in this interval) = 0.95.

But that is not the frequentist interpretation.
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Why this matters (outside statistics)

Many users of statistics are not statisticians:

medicine
biology

psychology
social sciences

People naturally interpret confidence intervals and p-values in the “probability of parameter”
way. This mismatch leads to misunderstandings and bad decisions.
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Likelihood: important, but not everything

Frequentist focus

Likelihood is treated as the centre of inference:

m(y | 0).

@ Likelihood contains lots of information.

@ But it is not the only information available.

Notation note

You might have seen:
L(G:y), flyl0), m=(y]0).

In this module, | write all distributions as 7(-).
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The “wrong way round” feeling

The likelihood asks:
7w(y | #) (data given parameters).

But what do we actually observe?
We observe the data y. We do not observe 6.

w(0 | y) (parameters given data).

This is the object Bayesian inference is built around.
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Bayes' theorem connects them

Bayes' theorem gives:
_ | 6)7(0)

(0 |y) )

Interpretation
o 7(y | 0): likelihood (model + data)
7(0): prior (before observing data)

7(0 | y): posterior (after observing data)

7(y): marginal likelihood / evidence (normalisation)
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Why priors upset frequentists

Frequentist viewpoint:

@ ¢ is a fixed unknown constant (not random).

@ randomness comes from the data-generating process.

“You can't put a probability distribution on a fixed parameter.”

Bayesian viewpoint

A prior represents uncertainty about 6 before seeing data. It is a modelling choice, like the
likelihood.
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Bayesian probability: the scary definition

Definition (informal)

Bayesian probability is the subjective belief that an event occurs.

Initial reaction

@ “That sounds unscientific.”

@ “Can you just make probabilities up?”

Over the next 10 weeks, we will make this sensible, scientific, and useful.
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Why Bayesian probability is useful

Some events do not have a meaningful “repeat forever” interpretation.

Example 1: individual event

Probability that | personally vote Labour in the next election.
@ One person
@ One election

@ One vote

Frequentist workaround

Model a group of “similar people” and treat randomness as population variability. This
addresses groups, but not a single individual directly.

Billy Junqi Tang (School of Mathematics) 4BIC Lecture 1 55/78



Example 2: astronomy / space photography

You take a photo (e.g. distant part of the galaxy) and ask:

@ probability a star has a planet

@ probability of life, etc.

Why long-run frequency fails
@ repeating the photo gives the same result (idealised)

@ no meaningful “repeat experiment” variation

Bayesian benefit
You can express uncertainty and update beliefs using available information.
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Example 3: forensics / crime evidence

Footprint evidence:

@ often only one trace sample

@ no repetition possible

Frequentist workaround

Again, you model a population of “similar events” and infer at that level.

But Bayesian probability lets you reason directly about uncertainty even when repetition is not
realistic.
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The plan: build everything from scratch

From this point onward, we start properly.

How the lectures will work

@ We follow the lecture notes closely
o | will add extra explanation and intuition
@ You can read the notes alone, but:

e you'll miss the coding experience
e you'll miss interactive explanations

Reset your brain

Forget maximum likelihood for a moment. We rebuild probability + inference carefully.
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Definition: inference

Core definition
Inference is drawing conclusions from numerical data about quantities that are not observed.

@ Future / unobserved outcomes (prediction)

@ Parameters or quantities that cannot be directly observed
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nce type 1: predicting the future

Examples of prediction problems:

@ Clinical trials: predict patient outcomes under treatments
e Finance/insurance: forecast future payouts and risks

@ Actuarial work: set premiums from historical data

Key idea

You use data about the past to make probabilistic statements about the future.
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Inference type 2: unobservable parameters

Examples of inference for quantities you cannot observe:

@ Linear regression:
Y=mX+c+e

@ You can observe X and Y, but not m and c directly.

@ They exist as model parameters, not “physical objects”.

Inference goal
Use data to learn plausible values of parameters and their uncertainty.
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Frequentist probability (again)

Definition 1.1 (informal)

The probability of an event is the long-run relative frequency with which the event occurs.

What this forces
@ repetition

o fixed sample size

@ sampling distributions drive uncertainty statements
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Sampling distribution of a statistic

Key idea

If you repeat an experiment many times using a fixed sample size, your statistic changes from
run to run due to randomness and noise.

@ This distribution explains variability in estimates.

@ Sample size n heavily controls uncertainty.

Clinical trial intuition

Different groups of patients = slightly different outcomes, even if the underlying effect is the
same.
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Likelihood and maximum likelihood estimation

Likelihood

m(y | 0)

Frequentist approach:

@ choose 6§ that makes observed data most likely
e = arg m03X7T(y | 0)

@ then quantify uncertainty via sampling distributions

Many variants exist

method of moments, penalised likelihood, quasi-likelihood, ...

Billy Junqi Tang (School of Mathematics) 4BIC Lecture 1 64 /78



Confidence intervals vs credible intervals

Confidence interval (frequentist)

Coverage property under repetition:

PrUX) <0< V(X)) =1-a.

Credible interval (Bayesian)

Direct probability statement about 6:

Pr(0 €[a,b]|y)=1—ca.

Takeaway

Bayesian intervals usually match what people want uncertainty statements to mean.
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What we really care about

Bayesian target object

(0 |y)

The distribution of model parameters given observed data.

@ This object is central to everything in the module.
o It allows:

e uncertainty quantification

e prediction

e decision-making under uncertainty
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Bayesian inference: belief updating

Bayes' theorem

n(y | 6)7(6)

m(0|y) = )

e Start with prior belief 7(0)
o Observe data y
e Update to posterior belief (6 | y)

Slogan
Posterior < Likelihood x Prior.

Billy Junqi Tang (School of Mathematics) 4BIC Lecture 1 67 /78




Bayesian probability: definition 1.5 (informal)

Definition

Probability = subjective belief about an event occurring.

@ This is the major philosophical jump.

@ It is also where Bayesian inference gets its flexibility.

We will learn how to choose priors sensibly and how to justify modelling decisions scientifically.
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End of lecture: focus shifts to labs

The last part of Lecture 1 is about the first lab.

Who has programmed in R before?

@ Some will be experienced.

@ Some will be brand new.

@ The module is designed to support both.
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R is the main language for statistics

If you haven't used it before:
@ it's very widely used in statistics
@ it has great libraries and plotting tools

@ it's ideal for implementing Bayesian computation

| recommend using RStudio as it makes working in R easier.
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Lab notes: Chapter 2
Where to find lab material
Go to the lecture notes and open Chapter 2.

@ Chapter 2 covers the first two labs.

@ It is about becoming comfortable in R.

o It is strongly focused on sampling and simulation.
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Lab 1: sampling in R
Generate samples from distributions in R. \

Download/install R
(Recommended) install RStudio

Copy/paste starter code from the notes

Learn how to run simulations

Why sampling?

Sampling is the computational foundation of Bayesian inference.
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Exercises: three difficulty levels

Each exercise comes with multiple support levels.

e Hard: just the question

@ Medium: some structure / guidance

e Easy: fill in the blanks (code mostly provided)

How to choose

@ New to R = start with Easy/Medium
@ Comfortable with R = start with Hard
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A key skill: for loops

Why we practice loops

Many statistical ideas require repetition:
@ simulation
@ Monte Carlo approximations

@ repeated sampling experiments

Core concept

Repeat something many times to understand randomness.

This is useful both in classical and Bayesian settings.
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Advice for learning R

1) Google is very helpful

@ Lots of good answers exist online (e.g. Stack Overflow).

o If you're stuck, search for the error message.

2) Use ChatGPT wisely

Great for debugging code
Great for explaining error messages

Great for translating Python — R

Not great if it writes everything for you (you won't learn!)
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Lab preparation checklist

Before the first lab:

Q@ Install R

@ Install RStudio (recommended)
© Open the notes at Chapter 2

@ Try running a simple script in R
© Bring your laptop to Friday 1pm

If you hit problems

Bring them to the lab — we can fix them together.
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Lecture 1 summary

@ Canvas contains notes, timetable, assessments

@ Notes are in Bookdown (copy/paste code!)
@ Weekly schedule: 3 lectures + lab + guided study

@ Assessment: 50% exam + 50% coding coursework

Big picture

@ Frequentist inference: likelihood + long-run frequency interpretation
@ Bayesian inference: focus on 7(6 | y) via Bayes' theorem

@ Bayesian probability: subjective belief (made rigorous over the module)

Billy Junqi Tang (School of Mathematics) 4BIC Lecture 1 77/78



Next lecture

@ We start building probability and inference from scratch.
@ We will formalise Bayes' theorem and core definitions.

@ Keep thinking about:
“What should probability mean?”

Admin / assessment / labs / Bayesian vs frequentist?
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