
Conditional Probability, Dependence, Exchangeability & de Finetti’s
Theorem

Conditional Prob., Independence, Exchangeability 1 / 19



Lecture Roadmap

Warm-up: Conditional probability and dependence/independence

Main topic: Exchangeability (a weaker symmetry property than i.i.d.)

Key goal: Understanding why exchangeability matters for Bayesian modelling

Destination: de Finetti’s theorem (informal statement + interpretation)

Big picture:

i.i.d. ⇒ exchangeable and exchangeable ⇒ mixture of i.i.d. (de Finetti)
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Conditional Probability (Definition)

Let A and B be events with P(B) > 0.

Definition:

P(A | B) =
P(A ∩ B)

P(B)
.

Interpretation:

P(A | B) means: “the probability that A occurs given that we already know B occurred.”

Conditioning restricts the universe to B.

Then we ask: what fraction of that restricted universe lies inside A?

Requirement: P(B) > 0 (otherwise division is not defined).
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Conditional Probability: Diagrammatic Intuition

Ω
A B

A ∩ B

Key idea: once we know B happened, the sample space becomes B.

P(A | B) = “size of A ∩ B”

“size of B”

In probability language: P(A | B) = P(A ∩ B)/P(B).
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Independence (and Conditional Independence)

(Unconditional) independence: A and B are independent if

P(A ∩ B) = P(A)P(B).

Conditional independence: Let A,B,C be events with P(C ) > 0. We say

A ⊥ B | C ⇐⇒ P(A ∩ B | C ) = P(A | C )P(B | C ).

Interpretation:

Once we know C , the events A and B become “unrelated”.

The information in A does not change the probability of B, given C .

Equivalent form (often useful):

A ⊥ B | C ⇐⇒ P(A | B,C ) = P(A | C ),

whenever P(B ∩ C ) > 0.
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Why We Care: Moving Toward Bayesian Modelling

In Bayesian statistics, we allow ourselves to place a probability distribution on a model
parameter θ:

θ ∼ π(θ).

Frequentist perspective:

The parameter θ is fixed (unknown but not random).

Randomness lives only in the data X .

Bayesian perspective:

θ represents our uncertainty / belief.

π(θ) is a subjective probability distribution.

Question: When is it mathematically justified to write down π(θ) at all?

This is where exchangeability and de Finetti’s theorem enter.
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Exchangeability (Definition)

Let (Y1, . . . ,YN) have joint density / pmf

π(y1, . . . , yN).

Definition (Exchangeability): (Y1, . . . ,YN) are exchangeable if for any permutation σ of
{1, . . . ,N},

π(y1, . . . , yN) = π(yσ(1), . . . , yσ(N)).

Meaning:

Reordering the labels does not change the joint distribution.

The variables are “symmetric” in their roles.

Exchangeability is weaker than i.i.d.

Quick fact: If Y1, . . . ,YN are i.i.d., then they are exchangeable.
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Exchangeability vs Independence

Important: Exchangeability ̸= independence.

Independence

Means factorisation into a product:

π(y1, . . . , yN) =
N∏
i=1

π(yi ).

Exchangeability

Means invariance under permutations:

π(y1, . . . , yN) = π(yσ(1), . . . , yσ(N)).

Common misconception:

Exchangeable variables can still be dependent.
They only need to be “equally distributed” under label shuffling.Conditional Prob., Independence, Exchangeability 8 / 19



Examples: Are They Independent? Are They Exchangeable?

Consider the following examples.

(1) Four Binomial variables

Yi ∼ Binomial(n, p), i = 1, 2, 3, 4.

(2) Bivariate Normal(
X
Y

)
∼ N

((
0
0

)
,Σ

)
, Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
.

(3) Trivariate NormalX
Y
Z

 ∼ N

1
2
3

 ,Σ

 , Σ =

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 .

Task: For each case, decide:

Independent? Exchangeable?
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Example (1): Binomial Case

Yi ∼ Binomial(n, p), i = 1, 2, 3, 4, (assume i.i.d.)

Independence: Yes, by assumption i.i.d.

Exchangeability: Yes, because the joint distribution factorises and each factor is identical:

π(y1, y2, y3, y4) =
4∏

i=1

π(yi ),

and reordering (y1, y2, y3, y4) does not change the product.

So:
(Y1,Y2,Y3,Y4) are independent and exchangeable.
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Example (2): Bivariate Normal

(X ,Y ) ∼ N (0,Σ) , Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
.

Independence:

X and Y are independent iff the covariance is 0.

For a Gaussian, covariance 0 ⇐⇒ independence.

So independence holds iff ρ = 0.

Exchangeability:

Exchangeable means (X ,Y ) has same distribution as (Y ,X ).

This is true if the joint distribution is symmetric under swapping.

In many common cases (e.g. equal marginal variances), this holds.

Conclusion:

Exchangeable: often yes (symmetry). Independent: only if ρ = 0.
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Example (3): Trivariate Normal

(X ,Y ,Z ) ∼ N

1
2
3

 ,Σ

 .

Not independent (typically):

In a multivariate normal, non-zero off-diagonal entries (covariances) usually imply
dependence.
Independence would require all off-diagonal covariances to be zero.

Exchangeability requires symmetry:

If we reorder variables, we must reorder the mean vector and covariance structure
accordingly.
To compare π(x , y , z) with π(z , y , x), the mean vector would need to become (3, 2, 1)⊤

under relabelling, and Σ must be permuted.

Takeaway:
Exchangeability can hold even without independence,

but it depends on whether the distribution is invariant under relabelling.
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From Conditional i.i.d. to Exchangeability (Proposition)

Proposition

If θ ∼ π(θ) and
Y1, . . . ,YN are conditionally i.i.d. given θ,

then marginally (unconditionally) the variables Y1, . . . ,YN are exchangeable.

Meaning:

Given the latent parameter θ, the data look i.i.d.

But after we “integrate out” θ, dependencies appear.

Despite possible dependence, we still retain symmetry under reordering:

(Y1, . . . ,YN) are exchangeable.
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Proof of the Proposition (Step-by-step)

Assume conditional i.i.d. given θ:

π(y1, . . . , yN | θ) =
N∏
i=1

π(yi | θ).

Marginal joint distribution:

π(y1, . . . , yN) =

∫
π(y1, . . . , yN | θ)π(θ) dθ.

Substitute the conditional i.i.d. factorisation:

π(y1, . . . , yN) =

∫ ( N∏
i=1

π(yi | θ)

)
π(θ) dθ.

Now apply any permutation σ:

N∏
i=1

π(yi | θ) =
N∏
i=1

π(yσ(i) | θ),

because multiplication of numbers is commutative.

Therefore,

π(y1, . . . , yN) =

∫ ( N∏
i=1

π(yσ(i) | θ)

)
π(θ) dθ = π(yσ(1), . . . , yσ(N)),

which is exactly exchangeability. □
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What This Proposition Tells Us

Conditional i.i.d. ⇒ exchangeability marginally.

This is a very common Bayesian modelling structure:

θ ∼ π(θ), Yi | θ
i.i.d.∼ π(· | θ).

Key insights:

Even if Y1, . . . ,YN are not independent marginally, they are symmetric.

This symmetry is exactly the notion of exchangeability.

This provides a natural bridge between Bayesian latent-variable models and probabilistic
symmetry assumptions.
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de Finetti’s Theorem (Informal Statement)

Theorem (de Finetti, informal)

If Y1, . . . ,YN are exchangeable, then their joint distribution can be written as

π(y1, . . . , yN) =

∫ ( N∏
i=1

π(yi | θ)

)
π(θ) dθ,

for some latent parameter θ and some distribution π(θ).

Interpretation:

Exchangeability implies the data behave as if they were i.i.d. given a hidden θ.

The distribution π(θ) can be viewed as a “prior”.

So de Finetti gives (under suitable conditions) a representation theorem:

Exchangeable ⇐⇒ Mixture of i.i.d. models.
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Why de Finetti Matters for Bayesian Statistics

Bayesian philosophy: It is meaningful to assign probabilities to unknown parameters.

Frequentist objection:

Parameters are fixed constants, not random quantities.

Writing π(θ) seems unnatural or unjustified.

de Finetti’s response:

If you accept exchangeability of your observations, then there exists a latent parameter θ
such that the data are i.i.d. given θ.

Therefore a distribution π(θ) exists (mathematically).

Crucial nuance:

de Finetti guarantees existence of some π(θ),

but it does not guarantee your chosen prior is “good” or realistic.
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Example: Normal Model with a Prior

Suppose a data model is

Xi | µ ∼ N (µ, σ2), i = 1, . . . ,N.

Frequentist view: µ is fixed but unknown.

Bayesian view: we express uncertainty via a prior

µ ∼ π(µ).

Then the marginal joint distribution is a mixture:

π(x1, . . . , xN) =

∫ ( N∏
i=1

N (xi | µ, σ2)

)
π(µ) dµ.

Message: Exchangeability allows us to interpret this model as a coherent representation of
beliefs.
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Summary and What Comes Next

Today we covered:

Conditional probability:

P(A | B) = P(A ∩ B)

P(B)
Conditional independence:

A ⊥ B | C ⇐⇒ P(A ∩ B | C ) = P(A | C )P(B | C )

Exchangeability:
π(y1, . . . , yN) = π(yσ(1), . . . , yσ(N))

Proposition: conditional i.i.d. given θ ⇒ exchangeable marginally

de Finetti (informal): exchangeability ⇒ mixture of i.i.d. (a “prior” exists)

Next lecture: Bayes’ theorem

π(θ | y) = π(y | θ)π(θ)
π(y)

and how to interpret posterior inference.
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