Conditional Probability, Dependence, Exchangeability & de Finetti's

Theorem
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Lecture Roadmap

e Warm-up: Conditional probability and dependence/independence
e Main topic: Exchangeability (a weaker symmetry property than i.i.d.)
o Key goal: Understanding why exchangeability matters for Bayesian modelling

e Destination: de Finetti's theorem (informal statement + interpretation)

Big picture:

i.i.d. = exchangeable and exchangeable = mixture of i.i.d. (de Finetti)
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Conditional Probability (Definition)

Let A and B be events with P(B) > 0.

Definition:
P(AN B)

PAIB) = —5g)

Interpretation:
e P(A | B) means: “the probability that A occurs given that we already know B occurred.”
o Conditioning restricts the universe to B.

@ Then we ask: what fraction of that restricted universe lies inside A?

Requirement: P(B) > 0 (otherwise division is not defined).
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Conditional Probability: Diagrammatic Intuition

Key idea: once we know B happened, the sample space becomes B.

“size of AN B”
“size of B"
In probability language: P(A | B) = P(AN B)/P(B).

P(A| B) =
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Independence (and Conditional Independence)

(Unconditional) independence: A and B are independent if
P(AN B) =P(A)P(B).
Conditional independence: Let A, B, C be events with P(C) > 0. We say
ALB|C << PANB|C)=PA|C)P(B|C).
Interpretation:

@ Once we know C, the events A and B become “unrelated”.
@ The information in A does not change the probability of B, given C.

Equivalent form (often useful):

ALB|C <= P(A|B,C)=PA|C),
whenever P(BN C) > 0.
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Why We Care: Moving Toward Bayesian Modelling

In Bayesian statistics, we allow ourselves to place a probability distribution on a model

parameter 0:
0 ~ 7(0).

Frequentist perspective:
@ The parameter 6 is fixed (unknown but not random).

@ Randomness lives only in the data X.

Bayesian perspective:
@ 0 represents our uncertainty / belief.
e 7(0) is a subjective probability distribution.
Question: When is it mathematically justified to write down () at all?

This is where exchangeability and de Finetti’s theorem enter.
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Exchangeability (Definition)

Let (Y1,..., Yn) have joint density / pmf

7T(y1, e ,yN).
Definition (Exchangeability): (Yi,..., Yn) are exchangeable if for any permutation o of
{1,..., N},
71—(_)/1, s 7yN) = 71-(.ya'(l)7 s 7.y0'(N))'
Meaning;:

@ Reordering the labels does not change the joint distribution.
@ The variables are “symmetric” in their roles.

@ Exchangeability is weaker than i.i.d.
Quick fact: If Yq,..., Yy arei.i.d., then they are exchangeable.

Conditional Prob., Independence, Exchangeability



Exchangeability vs Independence

Important: Exchangeability # independence.

Independence

Means factorisation into a product:

N
7T(y17 oo 7.yN) = Hﬂ-(yl)
i=1

Exchangeability

Means invariance under permutations:

(Y1, YN) = T(Yo(1)s - - -5 Yo(n))-

Common misconception:
@ Exchangeable variables can still be dependent.
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Examples: Are They Independent? Are They Exchangeable?

Consider the following examples.

(1) Four Binomial variables

Y; ~ Binomial(n,p), i=1,2,3,4.
(2) Bivariate Normal

X 0 _ o2 POxTy
) (G =) ==, )

y
(3) Trivariate Normal

X 1 * % %
Y| ~N[[2],2], Y= % * x
Z

w
*
*
*

Task: For each case, decide:

Independent? Exchangeable?
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Example (1): Binomial Case

Y; ~ Binomial(n,p), i=1,2,3,4, (assumei.i.d.)
Independence: Yes, by assumption i.i.d.
Exchangeability: Yes, because the joint distribution factorises and each factor is identical:

4

7T(,V1,)/2,)/3a}’4) = Hﬂ-(yl')a
i=1

and reordering (y1, y2, ¥3, y4) does not change the product.

So:
(Y1, Y2, Y3, Ya) are independent and exchangeable.

Conditional Prob., Independence, Exchangeability



Example (2): Bivariate Normal

(X,Y)~N(0,5), £= ( £ ”"XZUY> .
poxoy Oy
Independence:
@ X and Y are independent iff the covariance is 0.
@ For a Gaussian, covariance 0 <= independence.

@ So independence holds iff p = 0.

Exchangeability:
@ Exchangeable means (X, Y) has same distribution as (Y, X).
@ This is true if the joint distribution is symmetric under swapping.
@ In many common cases (e.g. equal marginal variances), this holds.

Conclusion:

Exchangeable: often yes (symmetry). Independent: only if p = 0.
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Example (3): Trivariate Normal

Not independent (typically):

@ In a multivariate normal, non-zero off-diagonal entries (covariances) usually imply
dependence.

@ Independence would require all off-diagonal covariances to be zero.
Exchangeability requires symmetry:

@ If we reorder variables, we must reorder the mean vector and covariance structure
accordingly.

o To compare 7(x, y, z) with 7(z, y, x), the mean vector would need to become (3,2,1) "
under relabelling, and >~ must be permuted.

Takeaway:
Exchangeability can hold even without independence,
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From Conditional i.i.d. to Exchangeability (Proposition)

Proposition
If 6 ~ 7(#) and

Yi,..., Yy are conditionally i.i.d. given 6,

then marginally (unconditionally) the variables Y1, ..., Yy are exchangeable.

Meaning:
@ Given the latent parameter 6, the data look i.i.d.
o But after we “integrate out” 6, dependencies appear.

@ Despite possible dependence, we still retain symmetry under reordering:

(Y1,..., Yn) are exchangeable.
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Proof of the Proposition (Step-by-step)

Assume conditional i.i.d. given 6:

N

w(yis- oy [0) =[] =i 1 0).

i=1

Marginal joint distribution:

w(yi,...,yn) = /ﬂ(yl,...,yN | 6) w(0) do.

Substitute the conditional i.i.d. factorisation:
N

(Y1, yN) = / (Hﬂ(y; | 0)) w(0) db.

i=1

Now apply any permutation o:

N N
[170i 1) =] 7o 1 60),
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What This Proposition Tells Us

Conditional i.i.d. = exchangeability marginally.
This is a very common Bayesian modelling structure:
b~m(0), Y0 (-|0).

Key insights:
@ Even if Y1,..., Yy are not independent marginally, they are symmetric.

@ This symmetry is exactly the notion of exchangeability.
@ This provides a natural bridge between Bayesian latent-variable models and probabilistic

symmetry assumptions.
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de Finetti's Theorem (Informal Statement)

Theorem (de Finetti, informal)

If Y1,..., Yy are exchangeable, then their joint distribution can be written as

N
7T(Y1;---7YN):/(H7T(YI \ 9)) (6) db,
i=1

for some latent parameter § and some distribution 7(6).

Interpretation:
@ Exchangeability implies the data behave as if they were i.i.d. given a hidden 6.
@ The distribution 7(#) can be viewed as a “prior”.

So de Finetti gives (under suitable conditions) a representation theorem:
Exchangeable <= Mixture of i.i.d. models.
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Why de Finetti Matters for Bayesian Statistics

Bayesian philosophy: It is meaningful to assign probabilities to unknown parameters.

Frequentist objection:
@ Parameters are fixed constants, not random quantities.

e Writing 7(6) seems unnatural or unjustified.

de Finetti’s response:

o If you accept exchangeability of your observations, then there exists a latent parameter 6
such that the data are i.i.d. given 6.

@ Therefore a distribution () exists (mathematically).

Crucial nuance:
o de Finetti guarantees existence of some 7(0),

@ but it does not guarantee your chosen prior is “good” or realistic.
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Example: Normal Model with a Prior

Suppose a data model is
Xi | o~ N(u,0?), i=1,...,N.

Frequentist view: p is fixed but unknown.

Bayesian view: we express uncertainty via a prior
p~ m(p).

Then the marginal joint distribution is a mixture:

N
7r(><1,~-,x/v)=/(l—[/\/()<;|u,02)> m(p) dp.
i=1

Message: Exchangeability allows us to interpret this model as a coherent representation of
beliefs.
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Summary and What Comes Next

Today we covered:
o Conditional probability:
P(ANB)
P(A|B) = ———
(A18)="55)
e Conditional independence:
ALB|C <= P(ANB|C)=PA| O)P(B| C)
o Exchangeability:
7T(.yla oo ayN) = 7-‘-(.yo‘(l)v s 7.yO'(N))
@ Proposition: conditional i.i.d. given § = exchangeable marginally
@ de Finetti (informal): exchangeability = mixture of i.i.d. (a “prior” exists)
Next lecture: Bayes' theorem
m(y [ 0)m(0)
m(y)
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(0] y) = and how to interpret posterior inference.



